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ABSTRAK

Nama : Mohammad Ferry Husnil Arif
Program Studi : Ilmu Komputer
Judul : Skema KZG Polynomial Commitment dalam Konstruksi

zk-SNARKs dan Implementasinya
Pembimbing : Drs. Lim Yohanes Stefanus, M.Math, Ph.D.

Zero-Knowledge Proof (ZKP) merupakan protokol kriptografi yang memungkinkan
pembuktian kebenaran suatu pernyataan tanpa perlu mengungkapkan informasi tambahan
selain validitas pernyataan itu sendiri. Salah satu konstruksi ZKP yang paling menjanjikan
adalah zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs),
yang menawarkan ukuran proof yang ringkas dan tidak memerlukan interaksi antara
prover dan verifier. Keunggulan ini membuka peluang aplikasi yang dapat menjaga
privasi di berbagai bidang. Namun demikian, terdapat kesenjangan pemahaman yang
cukup besar antara penjelasan konseptual umum dan pemahaman matematis mendalam
yang diperlukan untuk memahami cara kerja protokol ini. Tugas akhir ini menyajikan
pembahasan menyeluruh tentang skema KZG polynomial commitment dan menunjukkan
peranannya yang fundamental dalam protokol zk-SNARKs modern, khususnya Marlin
dan Plonk. Pembahasan dimulai dari dasar-dasar matematis mencakup teori group, field,
polynomial ring, elliptic curve, dan billinear pairing, disertai contoh-contoh numerik
untuk memperjelas setiap konsep. Skema KZG dibahas secara lengkap termasuk bukti
keamanan dan berbagai teknik optimisasi. Selanjutnya dianalisis bagaimana Marlin dan
Plonk memanfaatkan KZG untuk menghasilkan sistem dengan universal and updatable
structured reference strings, masing-masing dengan pendekatan arithmetization yang
berbeda sesuai tujuan desainnya. Implementasi kedua protokol dalam SageMath
disediakan untuk menghubungkan teori dengan praktik. Dengan pendekatan sistematis
dan contoh-contoh perhitungan pada finite field, tugas akhir ini dapat menjadi referensi
pembelajaran bagi mahasiswa S1 Ilmu Komputer dan Matematika yang ingin memahami
dan mengembangkan teknologi ZKP lebih lanjut.

Kata kunci:
KZG polynomial commitment, zero-knowledge proofs, zk-SNARKs, Marlin, Plonk
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ABSTRACT

Name : Mohammad Ferry Husnil Arif
Study Program : Computer Science
Title : KZG Polynomial Commitment Scheme on zk-SNARKs

Construction and Its Implementation
Supervisor : Drs. Lim Yohanes Stefanus, M.Math, Ph.D.

Zero-Knowledge Proofs (ZKPs) are cryptographic protocols that enable a prover to
convince a verifier of the validity of a statement without revealing any information
beyond the statement’s truth. Among the various ZKP constructions, zero-knowledge
succinct non-interactive arguments of knowledge (zk-SNARKs) have emerged as
particularly powerful primitives due to their succinct proof sizes and non-interactive
nature, enabling privacy-preserving applications across various domains. Despite their
growing importance, a significant educational gap exists between high-level conceptual
descriptions and the mathematical details necessary for understanding their construction.
This final project provides a comprehensive exposition of the KZG polynomial
commitment scheme and demonstrates its central role in modern zk-SNARKs protocols,
specifically Marlin and Plonk. The exposition builds mathematical foundations from first
principles, covering groups, fields, polynomial rings, elliptic curves, and bilinear pairings,
with each concept illustrated through detailed numerical examples. The KZG polynomial
commitment scheme is presented with complete proofs of its security properties and
optimization techniques. The project then examines how both Marlin and Plonk leverage
KZG commitments to achieve universal and updatable structured reference strings
while pursuing different design objectives through distinct arithmetization strategies. To
bridge theory and practice, complete implementations of both protocols are provided
in SageMath, allowing readers to experiment with concrete instantiations. Through
systematic exposition and extensive examples computed over finite fields, this work
serves as an educational resource for undergraduate students in Computer Science and
Mathematics, providing the foundational knowledge necessary to understand and engage
with ongoing developments in ZKPs.

Key words:
KZG polynomial commitment, zero-knowledge proofs, zk-SNARKs, Marlin, Plonk
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CHAPTER 1

INTRODUCTION

1.1 Background

Zero-Knowledge Proofs (ZKPs) are cryptographic protocols that enable a prover to

convince a verifier of the validity of a statement without revealing any information

beyond the statement’s truth. Since their introduction in the 1980s [GMR85], ZKPs

have evolved from theoretical constructs to practical cryptographic primitives with

widespread applications across various domains. ZKPs have found extensive use in

privacy-preserving cryptocurrencies such as Zcash [BSCG+14, FMMO19]. Beyond

cryptocurrencies, ZKPs are deployed in secure healthcare data management [GHK+22,

TDNHDS20], confidential financial auditing [LLH+22, RMMY12], and law verification

[BCG+22].

The development of zero-knowledge succinct non-interactive arguments of knowledge

(zk-SNARKs) marked a significant milestone in making ZKPs practical [BSCTV14].

These protocols achieve succinctness in proof size and verification time while maintaining

zero-knowledge properties. The core innovation lies in their ability to transform

computational statements into algebraic representations that can be efficiently verified.

This transformation process, known as arithmetization, converts programs or circuits into

constraint system that form the basis for proof generation and verification.

zk-SNARKs constructions follow a modular approach in their design. The typical

workflow involves two main steps: first, an information-theoretically secure protocol is

developed; second, this protocol is combined with cryptographic primitives to enforce

the required security properties in the presence of computationally bounded adversaries

[Tha22]. The polynomial commitment scheme serves as the crucial cryptographic

component in this second step, enabling the prover to commit to polynomials and later

reveal evaluations at specific points without exposing the entire polynomial.

The KZG polynomial commitment scheme [KZG10], named after Kate, Zaverucha,

and Goldberg, has emerged as a fundamental building block for many zk-SNARKs

constructions [MBKM19, GWC19, CHM+20, CBBZ23, Lip24]. Its efficiency and
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algebraic properties make it particularly suitable for protocols that require polynomial

evaluations and verification. The scheme leverages bilinear pairings to achieve

constant-size commitments and evaluation proofs, regardless of the polynomial degree.

This property is essential for maintaining the succinctness of zk-SNARKs.

1.2 Motivation

The field of ZKPs presents unique educational challenges for undergraduate students.

While ZKPs are increasingly important in modern cryptography and blockchain

technologies, the learning resources available often fall into two extremes: high-level

conceptual overviews that lack mathematical rigor, or research papers dense with

specialized notation and assumed background knowledge. This gap creates barriers for

students seeking to understand the concrete mechanisms behind these protocols.

Prerequisites and target audience This final project is designed for undergraduate

students in Computer Science and Mathematics interested in understanding zk-SNARKs

from both theoretical and practical perspectives. Readers should have a foundation in

basic cryptographic mathematics, particularly modular arithmetic, introductory finite field

theory, elementary group theory, and fundamental probability concepts. Beyond these

technical prerequisites, successful engagement with this material requires mathematical

maturity: the ability to parse formal definitions, follow logical arguments, and construct

mathematical proofs.

Readers who feel their mathematical background needs reinforcement will find Hoffstein

et al.’s ”An Introduction to Mathematical Cryptography” [HPS14] particularly helpful

for building cryptographic mathematical foundations. For those seeking deeper

understanding of zero-knowledge proofs specifically, Thaler’s ”Proofs, Arguments,

and Zero-Knowledge” [Tha22] provides thorough coverage of the field. This final

project develops concepts progressively, but acknowledges that some topics may require

consulting these supplementary resources for full comprehension. The combination

of this exposition with selective reference to these texts provides a complete learning

experience tailored to individual backgrounds.

The KZG polynomial commitment scheme, despite being fundamental to recent
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zk-SNARKs constructions, exemplifies this educational challenge. Academic papers

introducing KZG and its applications assume familiarity with bilinear pairings,

polynomial rings over finite fields, and various cryptographic assumptions. The

connections between abstract algebraic structures and their practical implementation

remain unclear without guided exposition.

Furthermore, understanding how the same cryptographic primitive enables different

protocol designs provides valuable insight into the modular nature of modern

cryptography. Examining protocols that share a common foundation but achieve different

performance characteristics through distinct design choices offers an excellent case study

for students to appreciate how theoretical tools translate into practical implementations.

1.3 Related Work

Current state-of-the-art Recent advances in zk-SNARKs have focused on achieving

universal and updatable structured reference strings (SRS). Protocols like Marlin

[CHM+20] and Plonk [GWC19] utilize KZG commitments to enable a single trusted

setup that can be used for multiple circuits up to a predetermined size bound.

This universality significantly improves the practical deployment of zk-SNARKs by

eliminating the need for circuit-specific trusted setups. The updatable property further

enhances security by allowing multiple parties to contribute to the SRS generation,

ensuring that the system remains secure as long as at least one participant is honest

[GKM+18].

Among these state-of-the-art protocols, Marlin and Plonk stand out as particularly

instructive for educational purposes. The Marlin protocol introduces algebraic

holographic proofs that optimize prover efficiency, while Plonk simplifies the constraint

system representation through custom gates and permutation arguments. Both protocols

represent the current state-of-the-art in preprocessing zk-SNARKs with universal SRS,

offering different trade-offs between prover complexity, verifier efficiency, and proof size.

These protocols were selected for detailed study in this work for several reasons.

First, both utilize the KZG polynomial commitment scheme as their core cryptographic

primitive, demonstrating its versatility. Second, they achieve similar security guarantees

through fundamentally different arithmetization strategies: Marlin through R1CS and

Universitas Indonesia
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sophisticated sumcheck protocols, Plonk through custom gates and elegant permutation

arguments. Third, both have gained significant adoption in real-world applications,

with implementations across multiple frameworks including Arkworks, Zokrates, Gnark,

SnarkJS, Noir, Dusk-PLONK, and Halo2 [SAKK25]. This widespread adoption indicates

their practical importance and makes understanding their construction valuable for

students entering the field.

Existing implementations Production frameworks prioritize performance and are

designed for deployment rather than education. For instance, arkworks is a

comprehensive Rust-based library that provides highly optimized implementations of

various zk-SNARKs protocols. While Rust enables excellent performance and memory

safety, its syntax and type system complexity can obscure the underlying mathematical

constructions for learners. Similarly, other production frameworks like Gnark (Go) and

SnarkJS (JavaScript) are optimized for their respective deployment contexts, whether

high-performance servers or browser environments. These implementations necessarily

involve language-specific idioms, performance optimizations, and architectural decisions

that, while excellent for production use, create barriers for students trying to understand

the core cryptographic constructions. The gap between the mathematical definitions in

papers and these production-ready implementations motivates the need for educational

code that prioritizes clarity and direct correspondence to theory.

1.4 Research Position

This final project positions itself as an educational bridge between theoretical papers and

production implementations. Unlike the performance-optimized frameworks surveyed

in [SAKK25], this work prioritizes pedagogical clarity, implementing protocols in a

step-by-step manner that directly corresponds to theoretical constructions.

This final project addresses the educational needs identified in the motivation by providing

a systematic exposition that builds mathematical concepts from first principles. Each

theoretical development is accompanied by numerical examples computed over small

finite fields, making abstract concepts concrete and verifiable. The inclusion of SageMath

implementations allows students to experiment with the protocols, modify parameters,

and observe immediate connections between theory and computation.
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The SageMath implementations provided here are designed for understanding rather than

performance. SageMath is chosen for its built-in support for finite field arithmetic,

polynomial operations, and elliptic curves, along with its readable Python-like syntax

that makes the code accessible to students. Unlike production libraries that optimize

for speed through parallel processing, assembly code, and specialized data structures,

these educational implementations prioritize clarity and direct correspondence to the

mathematical definitions.

By focusing on educational clarity rather than novelty, this work contributes to the broader

goal of making advanced cryptographic concepts accessible to the next generation of

computer scientists and mathematicians. The systematic progression from mathematical

foundations through concrete examples to working implementations creates a complete

learning pathway. Understanding these foundational protocols, particularly how Marlin

and Plonk leverage the same KZG primitive in different ways, equips students with the

knowledge necessary to engage with ongoing developments in verifiable computation and

privacy-preserving technologies.

This educational approach fills a crucial gap in the existing literature. While research

papers assume extensive background knowledge and production implementations hide

mathematical details behind optimizations, this work provides the missing middle ground

where students can see exactly how theoretical constructions translate into executable

code.

1.5 Objectives

This final project provides a comprehensive educational exposition of the KZG

polynomial commitment scheme and its implementation in zk-SNARKs protocols. The

primary objective is to make these advanced cryptographic concepts accessible to

undergraduate students through clear mathematical development and concrete examples.

The specific objectives are:

1. To develop the mathematical foundations of polynomial commitment schemes from

first principles, including groups, fields, polynomial rings, elliptic curves, and bilinear

pairings, with each concept illustrated through worked examples.

2. To present a detailed exposition of the KZG polynomial commitment scheme,
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explaining its construction, proving its security properties, and demonstrating

optimization techniques through concrete calculations.

3. To explain the theoretical framework of preprocessing zk-SNARKs with universal

structured reference strings, showing how polynomial commitments enable the

transformation from interactive proofs to non-interactive arguments.

4. To analyze the core techniques used in zk-SNARKs, including polynomial encoding,

polynomial identity testing, univariate sumcheck, and permutation arguments, with

step-by-step examples for each technique.

5. To provide complete expositions of the Marlin and Plonk protocols, demonstrating how

both utilize KZG commitments while achieving different design objectives through

distinct arithmetization approaches.

6. To implement both protocols in SageMath with educational clarity, prioritizing direct

correspondence to mathematical definitions over performance optimization.

7. To compare and contrast how Marlin and Plonk leverage the same polynomial

commitment primitive, illustrating the flexibility of modular cryptographic design.

8. To provide self-assessment opportunities throughout the exposition, ensuring readers

can verify their understanding of each concept before proceeding to more advanced

topics.

Through this systematic exposition, students will gain both theoretical understanding and

practical experience with polynomial commitment schemes and their role in ZKPs. This

foundation enables further exploration of advanced topics in verifiable computation and

cryptographic protocol design.

1.6 Contributions

This final project makes several educational contributions to the understanding of

polynomial commitment schemes and zk-SNARKs:

1. Comprehensive mathematical exposition: This work provides enough self-contained

development of all mathematical concepts required for understanding KZG and its

applications. Starting from basic algebraic structures and building through bilinear

pairings and polynomial commitments, each concept is carefully explained with

definitions, theorems, and proofs accessible to undergraduate students.
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2. Extensive worked examples: Every major concept is illustrated with detailed

numerical examples computed over small finite fields. These examples show exact

calculations for group operations, polynomial arithmetic, elliptic curve points, pairing

computations, and complete protocol executions, making abstract theory concrete and

verifiable. The examples serve as checkpoints for understanding, allowing readers to

verify their comprehension before proceeding.

3. Accessible protocol explanations: The Marlin and Plonk protocols are presented with

clear exposition of their construction, adding explanation some missing detail in the

original paper. The step-by-step development shows how polynomial commitments

enable different arithmetization strategies and performance trade-offs.

4. Educational SageMath implementations: Complete implementations of both protocols

are provided in SageMath, chosen for its accessibility to students and built-in support

for finite field arithmetic and elliptic curves. The code follows the theoretical

constructions closely. This direct correspondence between theory and implementation

reinforces conceptual understanding and allows students to experiment with the

protocols.

5. Comparative analysis: By examining how two prominent protocols utilize the same

KZG primitive, this work illustrates the modular nature of cryptographic design.

Students can observe how different design choices in arithmetization and constraint

systems lead to distinct performance characteristics. This comparison demonstrates

that cryptographic primitives are flexible building blocks that can be composed in

various ways.

6. Bridge to advanced topics: This exposition provides sufficient background for students

to engage with current research in ZKPs. By understanding these foundational

protocols, students are prepared to explore recent developments in polynomial

commitment schemes, transparent zk-SNARKs, and other advances in verifiable

computation.

7. Validation of educational approach: The structure of this final project,

progressing from mathematical foundations through concrete examples to working

implementations, creates a complete learning pathway that addresses the educational

objectives. Each contribution supports the goal of making advanced cryptography

accessible to undergraduates by providing multiple perspectives on the same concepts.

These contributions collectively serve to lower the barrier to entry for students interested

Universitas Indonesia



8

in ZKPs, providing both theoretical grounding and practical experience necessary for

further study in this rapidly evolving field.

How to use this final project This final project is structured to accommodate readers

with different backgrounds and learning objectives. For beginners without prior

exposure to cryptographic mathematics, starting with Chapter 2 and working through

all examples is recommended to build a solid foundation. For those with cryptography

background who are familiar with basic group theory and finite fields, Chapter 3 on

the KZG polynomial commitment scheme can be the starting point, though Sections

2.5, 2.9, 2.10, and 2.11 from Chapter 2 provide important context specific to current

zk-SNARKs. Implementation-focused readers interested in understanding the code

should pay particular attention to Section 2.5 for FFT operations, Section 3.2 for the core

KZG construction, and Sections 6.1 and 6.2 for the complete protocol implementations.

Learning pathway The exposition follows a deliberate progression: mathematical

foundations establish the algebraic structures and cryptographic tools, the KZG scheme

introduces polynomial commitments as a fundamental primitive, the general framework

explains how interactive proofs become non-interactive zk-SNARKs, core techniques

show the common patterns across protocols, and finally the main protocols demonstrate

complete constructions. The SageMath implementations in Appendices 1 can be run

alongside reading the corresponding theory chapters, reinforcing understanding through

experimentation. Each chapter builds on previous material, but the modular structure

allows readers to focus on specific topics of interest after establishing the prerequisite

knowledge.

1.7 Report Outline

This final project is organized as follows:

1. Introduction presents the background, motivation, objectives, and contributions of

this educational exposition on polynomial commitment schemes and zk-SNARKs.

2. Preliminaries establishes the mathematical foundations required for understanding

polynomial commitments and zk-SNARKs, including groups, fields, polynomial rings,

elliptic curves, bilinear pairings, and cryptographic assumptions.
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3. KZG Polynomial Commitment Scheme provides a detailed exposition of the KZG

construction, proving its completeness, soundness, and extractability properties,

followed by optimization techniques for practical implementations.

4. Preprocessing zk-SNARKs with Universal SRS introduces the theoretical

framework for preprocessing arguments, explaining how interactive proofs transform

into non-interactive zk-SNARKs through polynomial commitments.

5. Techniques in zk-SNARKs examines core techniques including polynomial

encoding, polynomial identity testing, univariate sumcheck, and permutation

arguments that enable efficient proof systems.

6. Application of KZG on zk-SNARKs Protocols presents complete constructions of

Marlin and Plonk, demonstrating how both protocols utilize KZG commitments while

achieving different design objectives.

7. Conclusion summarizes the key insights gained from this exposition and suggests

directions for further study in polynomial commitment schemes and ZKPs.
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CHAPTER 2

PRELIMINARIES

This chapter establishes the mathematical and cryptographic foundations for

understanding KZG polynomial commitments and their application in zk-SNARKs. The

exposition progresses from algebraic structures through cryptographic assumptions and

security models.

Key results include: polynomial division enabling KZG evaluation proofs

(Corollary 2.3.4), the Schwartz-Zippel lemma for efficient polynomial identity

testing, FFT operations over fields with specific structure, elliptic curves providing the

commitment group G1, and bilinear pairings enabling constant-size verification.

The Strong Diffie-Hellman assumption ensures evaluation binding (Lemma 3.2.5), while

the algebraic group model enables proving extractability (Theorem 3.2.6). References

follow Hoffstein et al. [HPS14] for algebraic structures, Malik et al. [MMS96] for

polynomial rings, and original papers for specialized topics.

2.1 Group

Groups are fundamental algebraic structures consisting of a set with a binary operation

satisfying specific axioms.

Definition 2.1.1 (Group). A group (G, ·) consists of a set G with a binary operation

· : G×G→G satisfying:

1. Closure: For all a,b ∈G, a · b ∈G

2. Associativity: For all a,b,c ∈G, (a · b) · c= a · (b · c)
3. Identity: There exists e ∈G such that e ·a= a · e= a for all a ∈G

4. Inverses: For each a ∈G, there exists a−1 ∈G such that a ·a−1 = a−1 ·a= e

A group is abelian (or commutative) if a ·b= b ·a for all a,b∈G. In cryptography, groups

are typically written multiplicatively with operation · and identity 1. For elliptic curves,

additive notation is used: operation +, identity 0, inverse −a, and scalar multiplication

na= a+a+ · · ·+a (n times).
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A group G is cyclic if there exists an element g ∈ G such that G = {gk : k ∈ Z}. The

element g is called a generator, and G = ⟨g⟩ denotes that G is generated by g. The

notation ⟨g⟩ represents the smallest subgroup containing g, which in this case is the entire

group G. For finite cyclic groups, every element can be expressed as gk for some k ∈
{0,1, . . . , |G|−1}.

The order of a finite group G, denoted |G|, is the number of elements in G. The order of

an element a ∈G, denoted ord(a), is the smallest positive integer n such that an = e.

A subset H ⊆G is a subgroup if H forms a group under the operation inherited from G.

Theorem 2.1.2 (Lagrange’s Theorem). Let G be a finite group and H be a subgroup of

G. Then |H| divides |G|.

Lagrange’s theorem has crucial implications for polynomial operations in zk-SNARKs.

The subgroup divisibility property ensures that multiplicative subgroups of finite fields

have orders that divide the field’s multiplicative group order. For a multiplicative

subgroup H ⊆ F∗q of order n, Lagrange’s theorem guarantees that n | (q − 1). This

divisibility constraint is essential for the existence of primitive n-th roots of unity, which

enable efficient Fast Fourier Transform (FFT) operations over finite fields.

Example 2.1.3. Consider Z∗13 = {1,2,3,4,5,6,7,8,9,10,11,12} under multiplication

modulo 13, which has order 12. Element g = 2 generates the entire group:

21 = 2, 22 = 4, 23 = 8, 24 = 3, 25 = 6, 26 = 12

27 = 11, 28 = 9, 29 = 5, 210 = 10, 211 = 7, 212 = 1

Thus Z∗13 = ⟨2⟩ is cyclic.

The subgroup H = ⟨5⟩ = {1,5,12,8} has order 4, which divides 12 as guaranteed by

Lagrange’s theorem. Computing: 51 = 5, 52 ≡ 12 (mod 13), 53 ≡ 8 (mod 13), 54 ≡ 1

(mod 13).

To verify closure, consider 5 · 12 ≡ 60 ≡ 8 (mod 13) and 12 · 8 ≡ 96 ≡ 5 (mod 13).

Indeed, any product of elements in H remains in H .

Element orders: ord(3) = 12 (generator), ord(5) = 4, ord(12) = 2 since 122 ≡ 1
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(mod 13). Each order divides the group order 12, confirming Lagrange’s theorem.

2.2 Ring and field

Rings and fields extend groups by incorporating two operations, typically called addition

and multiplication.

Definition 2.2.1 (Ring). A ring (R,+, ·) consists of a set R with two binary operations

satisfying:

1. (R,+) is an abelian group with identity element 0

2. Multiplicative associativity: For all a,b,c ∈R, (a · b) · c= a · (b · c)
3. Distributivity: For all a,b,c ∈R,

(a) a · (b+ c) = (a · b)+(a · c)
(b) (a+ b) · c= (a · c)+(b · c)

A ring is commutative if multiplication is commutative: a ·b= b ·a for all a,b ∈R. A ring

has unity if there exists a multiplicative identity 1 ̸= 0 such that 1 · a = a · 1 = a for all

a ∈R.

Definition 2.2.2 (Field). A field (F,+, ·) is a commutative ring with unity where every

non-zero element has a multiplicative inverse. That is, for every a ∈ F with a ̸= 0, there

exists a−1 ∈ F such that a ·a−1 = 1.

Common examples include the rational numbers Q, real numbers R, and complex

numbers C. In cryptography, finite fields with finitely many elements are essential.

The characteristic of a field F , denoted char(F ), is the smallest positive integer n such

that 1+1+ · · ·+1︸ ︷︷ ︸
n times

= 0. If no such n exists, then char(F ) = 0. The characteristic is always

either 0 or a prime number.

Example 2.2.3. The integers Z form a commutative ring with unity but not a field, since

only±1 have multiplicative inverses. For instance, 2∈Z has no inverse: there is no x∈Z
such that 2x= 1.

In contrast, F5 = {0,1,2,3,4} with arithmetic modulo 5 forms a field. Every non-zero

element has an inverse: 1−1 = 1, 2−1 = 3 (since 2 ·3≡ 1 (mod 5)), 3−1 = 2, and 4−1 = 4
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(since 4 · 4 ≡ 1 (mod 5)). The field F5 has characteristic 5 since 1+ 1+ 1+ 1+ 1 ≡ 0

(mod 5).

2.3 Polynomial ring

Throughout this section, rings are assumed to be commutative with unity unless stated

otherwise.

Definition 2.3.1 (Polynomial Ring). For a ring R, the polynomial ring R[X] consists of

all polynomials with coefficients from R. An element f ∈R[X] has the form

f(X) = a0 +a1X+a2X
2 + · · ·+anX

n

where ai ∈R for all i ∈ {0,1, . . . ,n} and an ̸= 0 if f is non-zero.

For a non-zero polynomial f(X) = a0 + a1X + · · ·+ anX
n with an ̸= 0, its degree is

deg(f) = n. A polynomial is monic if its leading coefficient equals 1. For polynomials

f,g ∈ R[X], g divides f (denoted g | f ) if there exists h ∈ R[X] such that f = gh. A

polynomial p ∈ R[X] of degree at least 1 is irreducible over R if it cannot be expressed

as a product of two polynomials in R[X] of strictly smaller degree.

Theorem 2.3.2 (Polynomial Division). Let R be a ring and f,g ∈ R[X] with g monic.

Then there exist unique polynomials q,r ∈R[X] such that

f = qg+ r

where either r = 0 or deg(r)< deg(g).

Theorem 2.3.3 (Remainder Theorem). Let R be a ring. For f ∈ R[X] and a ∈ R, there

exists q ∈R[X] such that

f(X) = (X−a)q(X)+f(a)

Corollary 2.3.4. Let R be a ring, f ∈ R[X], and c,v ∈ R. Then f(c) = v if and only if

X− c divides f(X)−v.

Proof. By Theorem 2.3.3, f(X) = (X− c)q(X)+f(c) for some q(X) ∈R[X].
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If f(c) = v, then f(X)− v = (X− c)q(X)+ f(c)− v = (X− c)q(X), so X− c divides

f(X)−v.

Conversely, if X− c divides f(X)− v, then f(X)− v = (X− c)r(X) for some r(X) ∈
R[X]. Evaluating at X = c gives f(c)−v = 0, hence f(c) = v.

This corollary is crucial for construction KZG polynomial commitments in Section 3.2.

When a prover claims that polynomial p evaluates to v at point z, they prove this by

showing that p(X)−v is divisible by X−z. The KZG opening proof π =w(x)G1 where

w(X) = p(X)−v
X−z exists precisely because this division has no remainder when p(z) = v.

Corollary 2.3.5 (Factorization Theorem). Let R be a ring. For f ∈ R[X] and a ∈ R,

X−a divides f if and only if a is a root of f .

Theorem 2.3.6. Let F be a field and f ∈ F [X] be a non-zero polynomial of degree d.

Then f has at most d roots in F .

Proof. By induction on d. For d = 0, f is a non-zero constant with no roots. For d ≥ 1,

if f has no roots, the claim holds. Otherwise, let c ∈ F be a root. By Corollary 2.3.5,

f(X) = (X− c)q(X) for some q ∈ F [X] with deg(q) = d−1. Any root of f is either c

or a root of q. By induction, q has at most d−1 roots, so f has at most d roots.

Corollary 2.3.7. Let F be a field and f ∈ F [X] be a non-zero polynomial of degree at

most d. For a finite subset S ⊆ F ,

Pr[f(r) = 0 | r←$ S]≤ d

|S|

Proof. By Theorem 2.3.6, f has at most d roots in F . Let Z = {c ∈ F | f(c) = 0}. Then

|Z ∩S| ≤ |Z| ≤ d. The probability that a uniformly random r ∈ S satisfies f(r) = 0 is
|Z∩S|
|S| ≤

d
|S| .

For multiple variables, the multivariate polynomial ring R[X1,X2, . . . ,Xn] consists of all

polynomials in n variables with coefficients from R. An element has the form

f(X1,X2, . . . ,Xn) =
∑

α∈Zn
≥0

cαX
α1
1 Xα2

2 · · ·X
αn
n
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where only finitely many cα ∈R are non-zero. A monomial is a product Xα1
1 Xα2

2 · · ·Xαn
n

with degree α1 + α2 + · · ·+ αn. The total degree of a multivariate polynomial is the

maximum degree among its monomials.

Lemma 2.3.8 (Schwartz-Zippel Lemma [Sch80, Zip79]). Let F be a field and f ∈
F [X1,X2, . . . ,Xn] be a non-zero polynomial of total degree at most d. For a finite subset

S ⊆ F ,

Pr[f(r) = 0 | r←$ Sn]≤ d

|S|

Proof. By induction on n. For n= 1, apply Corollary 2.3.7. For n > 1, write

f(X1, . . . ,Xn) =

dn∑
i=0

gi(X1, . . . ,Xn−1) ·Xi
n

where dn = degXn
(f) and gdn ̸= 0. The polynomial gdn has total degree at most d−dn.

By the induction hypothesis, Pr[gdn(r1, . . . , rn−1) = 0]≤ d−dn
|S| .

When gdn(r1, . . . , rn−1) ̸= 0, the polynomial f(r1, . . . , rn−1,Xn) is non-zero of degree dn

in Xn. By Corollary 2.3.7, Pr[f(r) = 0 | gdn(r1, . . . , rn−1) ̸= 0]≤ dn
|S| .

When gdn(r1, . . . , rn−1) = 0, we have Pr[f(r) = 0 | gdn(r1, . . . , rn−1) = 0]≤ 1.

By the law of total probability:

Pr[f(r) = 0] = Pr[f(r) = 0 | gdn ̸= 0] ·Pr[gdn ̸= 0]

+Pr[f(r) = 0 | gdn = 0] ·Pr[gdn = 0]

≤ dn
|S|
·1+1 · d−dn

|S|

=
dn+d−dn
|S|

=
d

|S|

The Schwartz-Zippel lemma enables efficient polynomial identity testing in Section 5.2,

allowing zk-SNARKs to verify polynomial relations by checking equality at random

points rather than comparing all coefficients.
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2.4 Finite field

Finite fields, also known as Galois fields, are fields with finitely many elements.

Theorem 2.4.1. A finite field has pn elements for some prime p and positive integer n.

The prime p is the characteristic of the field.

For a prime p and positive integer n, the finite field with pn elements is denoted Fpn .

When n= 1, Fp denotes the field with p elements, represented as {0,1,2, . . . ,p−1} with

arithmetic modulo p.

Theorem 2.4.2. The multiplicative group F∗p = Fp \{0} is cyclic of order p−1.

For n > 1, the field Fpn is constructed as the quotient ring Fp[X]/(f) where f ∈ Fp[X] is

an irreducible polynomial of degree n, and (f) denotes the ideal generated by f . Elements

are represented as polynomials of degree less than n with coefficients in Fp.

Example 2.4.3. The field F23 = F8 can be constructed using the irreducible polynomial

f(X) =X3+X+1 over F2. Elements are polynomials of degree at most 2: {0,1,X,X+

1,X2,X2 +1,X2 +X,X2 +X+1}.

Addition: (X2 +X)+(X2 +1) =X+1 (since 2≡ 0 (mod 2)).

Multiplication: (X+1) ·X2 =X3+X2. Since X3+X+1 = 0 implies X3 =X+1, we

get (X+1) ·X2 = (X+1)+X2 =X2 +X+1.

The multiplicative group F∗23 has order 7. Element X is a generator: X1 =X , X2 =X2,

X3 =X+1, X4 =X2 +X , X5 =X2 +X+1, X6 =X2 +1, X7 = 1.

2.5 Fast Fourier Transform over finite fields

The FFT over finite fields enables efficient polynomial operations in zk-SNARKs. Unlike

classical FFT over complex numbers, this variant operates over finite fields Fq where q is

a prime supporting the required operations.

Let H = ⟨g⟩ be a multiplicative subgroup of F∗q of order n = 2k for some k ∈ N, where

g is a primitive n-th root of unity. The existence of such a subgroup requires n | (q− 1)
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by Theorem 2.1.2. The FFT enables efficient conversion between two representations of

a polynomial f ∈ Fq[X]:

• Coefficient representation: f(X) =
∑n−1

i=0 aiX
i

• Evaluation representation: (f(g0),f(g1), . . . ,f(gn−1))

The forward FFT transforms coefficients to evaluations, while the inverse FFT (IFFT)

performs the reverse. Both operations require O(n logn) field operations using the

Cooley-Tukey algorithm.

For a polynomial f(X) =
∑n−1

i=0 aiX
i, the FFT recursively splits into even and odd

coefficients:

f(X) = feven(X
2)+X ·fodd(X

2)

where feven(X) =
∑n/2−1

i=0 a2iX
i and fodd(X) =

∑n/2−1
i=0 a2i+1X

i.

This decomposition allows shared computations when evaluating at gj and gj+n/2, since

(gn/2)2 = 1 implies (gj+n/2)2 = g2j . The algorithm recurses on subproblems of size n/2

until reaching constant polynomials.

The relationship between representations is given by the Vandermonde matrix V where

Vij = gij :


f(g0)

f(g1)
...

f(gn−1)

=



1 1 1 · · · 1

1 g g2 · · · gn−1

1 g2 g4 · · · g2(n−1)

...
...

... . . . ...

1 gn−1 g2(n−1) · · · g(n−1)2




a0

a1
...

an−1



The FFT efficiently computes V a (coefficient to evaluation), while IFFT computes V −1v

(evaluation to coefficient).

The inverse matrix satisfies V −1 = 1
nV where V ij = g−ij . To verify, the (i, j)-th entry of

V V is:

(V V )ij =

n−1∑
k=0

gik ·g−kj =
n−1∑
k=0

gk(i−j)

Universitas Indonesia



18

This sum equals n when i = j, and 0 otherwise. When i ̸= j, let d = i− j ̸= 0. Since g

has order n, gd ̸= 1. Using the geometric series formula:

n−1∑
k=0

gkd =
gnd−1
gd−1

=
(gn)d−1
gd−1

=
1−1
gd−1

= 0

Thus V V = nI , yielding V −1 = 1
nV .

Therefore, the IFFT computes coefficients from evaluations using:

aj =
1
n

n−1∑
k=0

vk ·g−jk

The IFFT uses the same recursive structure as FFT but with g−1 instead of g, and scales

the result by n−1. The algorithm is shown in Code 2.1.

1 def fft(coeffs, omega, F):

2 """FFT: coefficients to evaluations"""

3 n = len(coeffs)

4 if n == 1:

5 return coeffs

6

7 # Split and recurse

8 even = fft(coeffs[0::2], omega**2, F)

9 odd = fft(coeffs[1::2], omega**2, F)

10

11 # Combine results

12 result = [F(0)] * n

13 omega_power = F(1)

14 for i in range(n//2):

15 result[i] = even[i] + omega_power * odd[i]

16 result[i + n//2] = even[i] - omega_power * odd[i]

17 omega_power *= omega

18

19 return result

20

21 def ifft(values, omega, F):

22 """IFFT: evaluations to coefficients"""

23 n = len(values)

24 # Use omegaˆ(-1) and scale by nˆ(-1)

25 result = fft(values, omega**(-1), F)

26 n_inv = F(n)**(-1)

27 return [x * n_inv for x in result]

Code 2.1: FFT and IFFT implementation
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In zk-SNARKs, FFT is essential for:

• Polynomial interpolation: Given evaluations at H , IFFT computes the unique

polynomial of degree less than n

• Polynomial multiplication: Multiply in O(n logn) time via pointwise multiplication in

evaluation form

Example 2.5.1. Consider polynomial interpolation in F17 using FFT. Let H = ⟨13⟩ =
{1,13,16,4} be a subgroup of order 4, where 13 is a primitive 4th root of unity (since

134 ≡ 1 (mod 17)).

Given evaluations v = (8,1,14,12) at points (130,131,132,133) = (1,13,16,4), find the

polynomial f of degree less than 4 such that f(13i) = vi.

Using IFFT with g−1 = 13−1 ≡ 4 (mod 17):

First recursion splits v = (8,1,14,12) into even indices (8,14) and odd indices (1,12).

For even indices: Recursively apply IFFT with (g−1)2 = 16. Combining gives a0 =

8+14 = 5 and a1 = 8−14 = 11.

For odd indices: With (g−1)2 = 16, we get a0 = 1+12 = 13 and a1 = 1−12 = 6.

Combining with powers of g−1 = 4:

a0 = 5+40 ·13 = 1

a1 = 11+41 ·6 = 1

a2 = 5−40 ·13 = 9

a3 = 11−41 ·6 = 4

Final scaling by n−1 = 4−1 ≡ 13 (mod 17) gives coefficients (13,13,15,1).

Therefore f(X) =X3 +15X2 +13X+13. The polynomial can be verified by checking

that f(1) = 8, f(13) = 1, f(16) = 14, and f(4) = 12.
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2.6 Elliptic curve

Definition 2.6.1 (Elliptic Curve). Let K be a field with characteristic neither 2 nor 3. An

elliptic curve E over K is the set of solutions (x,y) ∈K×K to an equation of the form

y2 = x3 +ax+ b

where a,b ∈ K and the discriminant ∆ = −16(4a3 + 27b2) ̸= 0, together with a special

point O called the point at infinity.

The equation y2 = x3 +ax+ b is the short Weierstrass form. The discriminant condition

∆ ̸= 0 ensures the curve is non-singular (no self-intersections or cusps).

Definition 2.6.2 (Group Operation on Elliptic Curves). An elliptic curve E forms an

abelian group with O as identity. For points P,Q ∈ E, the sum P +Q is defined:

1. If P =O, then P +Q=Q

2. If Q=O, then P +Q= P

3. If P = (xP ,yP ) and Q= (xQ,yQ) with xP = xQ and yP =−yQ, then P +Q=O
4. Otherwise, P +Q=R where R= (xR,yR) with:

xR = λ2−xP −xQ

yR = λ(xP −xR)−yP

where

λ=


yQ−yP
xQ−xP if P ̸=Q (point addition)
3x2

P+a
2yP

if P =Q (point doubling)

Theorem 2.6.3. Let E be an elliptic curve over field K. Then (E,+) forms an abelian

group.

For elliptic curves over finite fields Fq, the set E(Fq) forms a finite abelian group.

Theorem 2.6.4 (Hasse’s Theorem). Let E be an elliptic curve over Fq. The number of

points satisfies:

|q+1−#E(Fq)| ≤ 2
√
q
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Hasse’s theorem provides tight bounds on the group order, showing that #E(Fq) is

approximately q+1 with deviation at most 2
√
q.

Example 2.6.5. Consider E : y2 = x3 +x+ 1 over F11. The discriminant ∆ = −16(4+

27)≡ 6 (mod 11) is non-zero.

Finding all points: for each x ∈ F11, compute x3 + x+ 1 and check if it’s a quadratic

residue.

• x= 0: y2 = 1, so y =±1≡ 1,10

• x= 1: y2 = 3, no solutions (3 is not a square mod 11)

• x= 2: y2 = 11≡ 0, so y = 0

• x= 3: y2 = 31≡ 9, so y =±3≡ 3,8

Continuing this process yields E(F11) is:

{O,(0,1),(0,10),(1,5),(1,6),(2,0),(3,3)

(3,8),(4,5),(4,6),(6,5),(6,6),(8,2),(8,9)}

with 14 points which falls within the Hasse bound [5.34,17.66].

Point addition: P = (3,3)+Q= (4,5)

λ=
5−3
4−3

= 2

xR = 22−3−4 =−3≡ 8 (mod 11)

yR = 2(3−8)−3 =−13≡ 9 (mod 11)

Thus P +Q= (8,9).

Point doubling: 2P = 2(3,3)

λ=
3 ·32 +1

2 ·3
=

28
6
≡ 28 ·2≡ 1 (mod 11)

xR = 12−2 ·3 =−5≡ 6 (mod 11)

yR = 1(3−6)−3 =−6≡ 5 (mod 11)

Thus 2P = (6,5).
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2.7 Bilinear pairing

Definition 2.7.1 (Bilinear Pairing). Let G1, G2, and GT be cyclic groups of prime order

q. A bilinear pairing is a map e : G1×G2→GT with the following properties:

1. Bilinearity: For all a,b ∈ Zq, P ∈G1, and Q ∈G2:

e(aP,bQ) = e(P,Q)ab

2. Non-degeneracy: If P generates G1 and Q generates G2, then e(P,Q) generates GT

3. Efficiency: The pairing e can be computed efficiently

A pairing is symmetric if G1 = G2, otherwise asymmetric. In practice, asymmetric

pairings offer better efficiency.

A bilinear group is represented as bp= (G1,G2,GT , e,G1,G2, q) where:

• G1,G2: source groups (typically elliptic curve groups)

• GT : target group (subgroup of a finite field extension)

• e: the pairing operation

• G1,G2: generators of G1,G2 respectively

• q: prime order of all groups

The embedding degree of an elliptic curve E over Fp with subgroup of order q is the

smallest positive integer k such that q | (pk − 1). For practical pairings, curves need

embedding degree balancing security and efficiency.

Two pairing-friendly curves dominate modern implementations:

BN254 The Barreto-Naehrig curve [BN06] with embedding degree k = 12:

• Base field: Fp where p≈ 2254

• Base curve: E/Fp : y2 = x3 +3

• Prime order: q ≈ 2254 with 228 | (q−1)

BLS12-381 The Barreto-Lynn-Scott curve [BLS03] with embedding degree k = 12:
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• Base field: Fp where p≈ 2381

• Base curve: E/Fp : y2 = x3 +4

• Prime order: q ≈ 2255 with 232 | (q−1)

For KZG commitments, the field Fq requires q − 1 to have a large smooth factor

(specifically large powers of 2) to enable efficient FFT operations as discussed in Section

2.5. By Lagrange’s Theorem 2.1.2, multiplicative subgroups of order 2k can exist in F∗q
only when 2k | (q−1). Both BN254 and BLS12-381 pairing-friendly curves are designed

with this property: BN254 has 228 | (q−1) and BLS12-381 has 232 | (q−1), supporting

FFT operations on domains of size up to 228 and 232 respectively.

Example 2.7.2. Let bp = (G1,G2,GT , e,G1,G2, q) be a bilinear group. The bilinearity

property enables:

e(3G1,5G2) = e(G1,G2)
3·5 = e(G1,G2)

15

e(aG1 + bG1,G2) = e((a+ b)G1,G2) = e(G1,G2)
a+b

= e(G1,G2)
a · e(G1,G2)

b = e(aG1,G2) · e(bG1,G2)

Bilinear pairings are the key cryptographic tool enabling constant-size evaluation proofs

in KZG in Section 3.2. The pairing equation e(C− vG1,G2) = e(π,xG2− zG2) allows

verification of polynomial evaluations without revealing the polynomial itself.

2.8 Hash function

Hash functions are fundamental cryptographic primitives that compress arbitrary-length

inputs into fixed-length outputs [KL20]. A hash function is a deterministic algorithm

H : {0,1}∗→ {0,1}ℓ that takes an input string of any length and produces an output of

fixed length ℓ. This compression property is essential: hash functions map a potentially

infinite domain to a finite range, creating compact representations of large data.

The primary security requirement for cryptographic hash functions is collision resistance.

A hash function is collision resistant if it is computationally infeasible for any efficient

adversary to find two distinct inputs x ̸= x′ such that H(x) =H(x′). Such a pair (x,x′)

is called a collision. Since hash functions compress their inputs, collisions must exist by

the pigeonhole principle, but finding them should be computationally hard.
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Hash functions satisfy additional security properties beyond collision resistance.

Preimage resistance requires that given a hash output y = H(x) for a randomly chosen

input x, it should be hard to find any input x′ such that H(x′) = y. Second-preimage

resistance requires that given an input x, it should be hard to find a different input x′ ̸= x

such that H(x′) =H(x). Collision resistance implies second-preimage resistance, but not

vice versa.

Real-world cryptographic hash functions such as the SHA-2 [Nat15a] and SHA-3

[Nat15b] families are designed to satisfy these security properties. These standardized

functions have undergone extensive cryptanalytic scrutiny and are widely deployed in

practice. While theoretical analysis often considers keyed hash functions to avoid certain

technical complications, practical implementations use these unkeyed, standardized

functions.

Hash functions serve as foundational building blocks for numerous cryptographic

constructions. They provide a way to create compact ”digital fingerprints” of large data,

enabling efficient verification and comparison. In the context of ZKPs, hash functions

play crucial roles in the Fiat-Shamir transform for achieving non-interactive protocols in

Section 4.4.

2.9 Commitment scheme

Commitment schemes [Tha22] are cryptographic protocols involving two parties: a

committer and a verifier. The committer wishes to bind itself to a message without

revealing the message to the verifier. This creates a digital analogue of placing a message

in a sealed envelope: the commitment binds the committer to a specific value while

keeping that value hidden until a later revelation phase.

A commitment scheme must satisfy two fundamental security properties. The binding

property ensures that once the committer sends a commitment to some message m, it

should be unable to ”open” the commitment to any value other than m. The hiding

property guarantees that the commitment itself should not reveal information about m

to the verifier. These properties create a temporal separation between commitment and

revelation, enabling protocols where parties must commit to choices before learning

others’ decisions.

Universitas Indonesia



25

Formally, a commitment scheme consists of three algorithms: KeyGen, Commit, and

Verify. The key generation algorithm KeyGen is randomized and generates a commitment

key ck and verification key vk that are available to the committer and verifier respectively.

The commitment algorithm Commit is randomized, taking as input the commitment key

ck and message m to produce a commitment c along with possible opening information

d that the committer retains. The verification algorithm Verify takes the commitment

c, verification key vk, a claimed message m′, and opening information d, then decides

whether to accept m′ as a valid opening. The commitment scheme is correct if

Verify(vk, c,m,d) = 1 with probability 1 whenever (c,d) ← Commit(ck,m), meaning

honest committers can always successfully open their commitments.

Polynomial commitment schemes represent a specialized and powerful class of

commitment schemes where the committed messages are polynomials. Polynomial

commitments leverage the algebraic structure of polynomials to enable additional

functionality. Most importantly, they support evaluation proofs: after committing to

a polynomial p(X), the committer can later prove that p(z) = v for any point z and

claimed evaluation v, without revealing the entire polynomial. This capability transforms

polynomial commitments from simple hiding primitives into sophisticated tools for

verifiable computation. The formal treatment of polynomial commitment schemes is

developed in Section 3.1.

2.10 Cryptographic assumptions

Modern cryptographic constructions rely on computational hardness assumptions. A

function negl : N→ R+ is negligible if for every positive polynomial p, there exists Λ

such that for all λ > Λ, negl(λ) < 1
p(λ) [KL20]. This formalizes cryptographically small

probabilities.

In cryptographic applications, field size |Fq| is chosen to be exponential in the security

parameter: |Fq| = 2Θ(λ). This ensures that probability bounds from Lemma 2.3.8 are

negligible. For a polynomial of degree d = poly(λ) over such a field, the probability of

randomly hitting a root is at most d
|Fq | =

poly(λ)

2Θ(λ) = negl(λ)

Let BP be a bilinear group sampler outputting bp= (G1,G2,GT , e,G1,G2, q).

Assumption 2.10.1 (Discrete Logarithm (DL) Assumption). For any polynomial-time
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adversary A:

Pr

x′ = x

∣∣∣∣∣∣∣∣∣∣∣

bp← BP(1λ)

x←$ Fq

Σ←{xiG1}di=0∪{xG2}
x′←A(bp,Σ)

≤ negl(λ)

Assumption 2.10.2 (Strong Diffie-Hellman (SDH) Assumption [BB04]). For any

polynomial-time adversary A and degree bound d:

Pr

C =
1

x+ c
G1

∣∣∣∣∣∣∣∣∣∣∣

bp← BP(1λ)

x←$ Fq

Σ←{xiG1}di=0∪{xG2}
(c,C)←A(bp,Σ)

≤ negl(λ)

where c ∈ Fq \{−x}.

The DL assumption is well-established and forms the security foundation for many

cryptographic protocols, including Diffie-Hellman key exchange [DH76] and elliptic

curve cryptography [Kob87, Mil86]. Its hardness on properly chosen elliptic curves has

withstood decades of cryptanalytic effort [HPS14].

The SDH assumption is a stronger than DL: breaking DL enables breaking SDH by

computing x, choosing any c ̸= −x, and outputting 1
x+cG1. This more specialized

assumption introduced specifically for pairing-based cryptography. While less time-tested

than DL, SDH is necessary for proving the security of KZG polynomial commitments

scheme. The additional structure in SDH (providing multiple powers of x) reflects the

polynomial evaluation capabilities that KZG commitments enable.

2.11 Idealized model

Idealized models provide frameworks for analyzing cryptographic security by abstracting

certain components. These models balance theoretical rigor with practical relevance for

proving security properties.

Universitas Indonesia



27

Random oracle model The random oracle model (ROM) [BR93] idealizes hash

functions as truly random functions. A random oracle H : {0,1}∗ → {0,1}n operates

by:

• Returning the same output for repeated queries

• Selecting uniformly random outputs for new queries

The ROM is essential for the Fiat-Shamir transform [FS86], which converts interactive

protocols into non-interactive ones by replacing verifier challenges with hash function

evaluations of the transcript. This enables practical zk-SNARKs from interactive

protocols.

Algebraic group model The algebraic group model (AGM) [FKL18] restricts

adversaries to algebraic operations on group elements. An algebraic adversary outputting

Y ∈ G must provide coefficients (a1, . . . ,an) ∈ Fn
q such that Y =

∑n
i=1aiXi, where

X1, . . . ,Xn are previously received group elements.

The AGM together with Assumption 2.10 is particularly important for proving

the extractability of KZG polynomial commitments in Theorem 3.2.6, where the

algebraic representation allows extraction of the committed polynomial from any valid

commitment. This means that in the AGM, any adversary who produces a valid

KZG opening proof must actually ”know” the polynomial they committed to. They

cannot create valid proofs through non-algebraic manipulation of group elements. This

extractability property is crucial for ensuring that a cheating prover cannot convince the

verifier of false statements without possessing a valid witness.

The AGM is intermediate between the standard model and the generic group model

(GGM) [Sho97]:

• GGM: Adversaries access group elements only through random encodings

• AGM: Adversaries see actual encodings but must use them algebraically

• Standard model: No restrictions on adversary behavior

Security in AGM implies security in GGM, but not vice versa. The AGM provides

sufficient guarantees for polynomial commitment extractability while making fewer
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idealizations than GGM.
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CHAPTER 3

KZG POLYNOMIAL COMMITMENT SCHEME

The KZG polynomial commitment scheme, introduced by Kate, Zaverucha, and Goldberg

[KZG10], is a cryptographic primitive that allows a prover to commit to a polynomial

and later reveal evaluations of this polynomial at specific points. This scheme

leverages the mathematical foundations established in Chapter 2: groups for commitment

representation, polynomial division properties for creating evaluation proofs, and bilinear

pairings for succinct verification.

In this chapter, the KZG polynomial commitment scheme is presented following the

formalization given in [CHM+20, Appendix B]. The focus is on a specific variant that

supports committing to multiple polynomials with a single degree bound and evaluating

them at a single point. The chosen variant is also non-hiding for simplicity.

The chapter proceeds as follows: Section 3.1 formalizes polynomial commitment

schemes and their required properties. Section 3.2 presents the KZG construction,

demonstrating how bilinear pairings enable constant-size commitments and proofs

regardless of polynomial degree. Section 3.3 explores crucial optimizations including

batch verification and opening linear combinations of polynomials, techniques that make

KZG practical for large-scale zk-SNARKs applications.

For the remainder of this final project, [n] denotes the set {1,2, . . . ,n}. The notation

a= [ai]
n
i=1 serves as shorthand for the list [a1,a2, . . . ,an]. For polynomial lists, deg(p) =

maxi∈[n] deg(pi) denotes the maximum degree of any polynomial in p. The set F<d[X]

denotes univariate polynomials over the field F with degree strictly less than d. For a list

of polynomials p = [pi]i∈[n] and a field element z ∈ F, p(z) = [pi(z)]
n
i=1 represents the

list of evaluations of each polynomial in p at the point z.

3.1 Definition

Polynomial commitment schemes enable a prover to commit to a polynomial without

revealing it, then later prove evaluations at specific points. This primitive is essential

for zk-SNARKs, where polynomial relations encode computational statements. The

commitment hides the polynomial while binding the prover to consistent evaluations..
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A polynomial commitment scheme over a field family F for a single degree bound and

single evaluation point is a tuple of algorithms PC= (Setup,Commit,Open,Check) with

the following syntax:

PC.Setup(1λ,D)→ (ck, rk) On input a security parameter λ (in unary), and a maximum

degree bound D ∈N, PC.Setup samples a key pair (ck, rk). The keys contain a description

of a finite field F ∈ F .

PC.Commit(ck,pk,p)→ c On input ck and univariate polynomials p= [pi]
n
i=1 over the

field F with deg(p)≤D, PC.Commit outputs commitments c= [ci]
n
i=1 to the polynomials

p.

PC.Open(ck,p, z,ξ)→ π On input ck, univariate polynomials p = [pi]
n
i=1, evaluation

point z ∈ F, and opening challenge ξ, PC.Open outputs an evaluation proof π.

PC.Check(rk,c, z,v,π,ξ) ∈ {0,1} On input rk, commitments c = [ci]
n
i=1, evaluation

point z ∈ F, alleged evaluations v = [vi]
n
i=1, evaluation proof π, and opening challenge ξ,

PC.Check outputs 1 if π attests that, for each i ∈ [n], the polynomial committed in ci has

degree at most D and evaluates to vi at z.

The polynomial commitment scheme must satisfy the following properties:

Definition 3.1.1 (Completeness). For every maximum degree bound D ∈ N and efficient

adversary A it holds that

Pr


deg(p)≤D

⇓
PC.Check(rk,c, z,v,π,ξ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PC.Setup(1λ,D)

(p, z,ξ)←A(ck, rk)
c← PC.Commit(ck,p)

v← p(z)

π← PC.Open(ck,p, z,ξ)


= 1

Completeness ensures honest provers can always convince verifiers. This property is

typically straightforward to achieve and verify.
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Definition 3.1.2 (Extractability). For every maximum degree bound D ∈ N and efficient

adversary A, there exists an efficient extractor E such that for every round bound r ∈ N,

efficient public-coin challenger C, efficient query sampler Q, and efficient adversary B =

(B1,B2) the following probability is negligibly close to 1:

Pr



PC.Check(rk,c, z,v,π,ξ) = 1

⇓
deg(p)≤D and v = p(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PC.Setup(1λ,D)

For i= 1, . . . ,n :

ρi←C(ck, rk, i)
ci←A(ck, rk, [ρj ]ij=1)

pi←E(ck, rk, [ρj ]ij=1)

z←Q(ck, rk, [ρj ]rj=1)

(v, ←B1(ck, rk, [ρj ]
r
j=1, z)

Sample opening challenge ξ

π←B2(ξ)

Set c := [ci]i∈[n],p := [pi]i∈[n]



Extractability guarantees that any commitment corresponds to an actual polynomial of

bounded degree. This property, proven in the algebraic group model for KZG, prevents

malicious provers from creating commitments that cannot be opened consistently.

Definition 3.1.3 (Succinctness). A polynomial commitment scheme is succinct if the size

of commitments, the size of evaluation proofs, and the time to check an opening are all

independent of the degree of the committed polynomials. That is, |c|= n ·poly(λ), |π|=
poly(λ), and time(Check) = n ·poly(λ).

Without succinctness, polynomial commitments offer no advantage over sending the

polynomial directly. KZG achieves optimal succinctness with commitments and proofs

consisting of single group elements.

These three properties establish the security and efficiency framework for polynomial

commitment schemes. Completeness ensures that honest provers can always generate

valid proofs accepted by verifiers when committed polynomials truly evaluate to

claimed values. Extractability provides the crucial security guarantee that any

commitment-evaluation pair passing verification must correspond to an actual polynomial

of bounded degree. This prevents malicious provers from crafting non-polynomial
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commitments or claiming false evaluations. Succinctness makes the scheme practical

for cryptographic applications by keeping commitment sizes and verification costs

independent of polynomial degree. This allows efficient handling of high-degree

polynomials without prohibitive computational or communication overhead.

3.2 Construction

This section presents the KZG polynomial commitment scheme based on bilinear

pairings. The construction leverages the bilinearity property to enable constant-size

commitments and evaluation proofs, regardless of polynomial degree.

Let bp = (G1,G2,GT , e,G1,G2, q) be a bilinear group as defined in Section 2.7. Figure

3.1 summarizes the polynomial commitment scheme.

Setup On input a security parameter λ (in unary) and a maximum degree bound D ∈N,

the setup algorithm samples a bilinear group bp ← BP(1λ) and generates a random

element x ←$ Fq. It then computes the powers {xiG1}Di=0 ∈ GD+1
1 , which serve as

the public parameters. The commitment key is set as ck := (bp,{xiG1}Di=0), while the

verification key is set as rk := (bp,xG2). The algorithm outputs the key pair (ck, rk).

Commit On input ck and univariate polynomials p = [pi]
n
i=1 over Fq, the commitment

algorithm first checks that each polynomial has degree at most D, aborting otherwise. For

each polynomial pi represented as pi(X) =
∑D

j=0ai,jX
j where ai,j ∈ Fq, it computes the

commitment ci := pi(x)G1 =
∑D

j=0ai,j · (xjG1). This is possible without knowing the

secret value x directly, as the commitment key contains all required powers xjG1. The

algorithm outputs the list of commitments c= [ci]
n
i=1.

Open On input ck, univariate polynomials p = [pi]
n
i=1, evaluation point z ∈ Fq, and

opening challenge ξ ∈ Fq, the algorithm first verifies that all polynomials have degree at

most D. It then computes the linear combination p(X) :=
∑n

i=1 ξ
ipi(X). According to

Corollary 2.3.4, the polynomial X− z divides p(X)−p(z). This allows the algorithm to

compute the witness polynomial w(X) := p(X)−p(z)
X−z that is well-defined as polynomial

with degree less than D. The final proof is π := w(x)G1, computed using the parameter
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in the commitment key.

Check On input rk, commitments c = [ci]
n
i=1, evaluation point z ∈ Fq, alleged

evaluations v = [vi]
n
i=1, evaluation proof π, and opening challenge ξ ∈ Fq, the verification

algorithm computes the linear combinations C :=
∑n

i=1 ξ
ici and v :=

∑n
i=1 ξ

ivi. It then

verifies the evaluation proof by checking the pairing equation equality e(C−vG1,G2) =

e(π,xG2− zG2). The algorithm outputs 1 if the check passes, and 0 otherwise.

PC.Setup(1λ,D)→ (ck, rk)

bp← BP(1λ)

x←$ Fq

Compute {xiG1}Di=0 ∈GD+1
1

ck := (bp,{xiG1}Di=0)

rk := (bp,xG2)

return (ck, rk)

PC.Commit(ck,p)→ c

Check that deg(p)≤D, abort otherwise

For each pi(X) =

D∑
j=0

ai,jX
j :

ci :=
D∑
j=0

ai,j · (xjG1)

return c= [ci]
n
i=1

PC.Open(ck,p, z,ξ)→ π

Check that deg(p)≤D

p(X) :=
n∑
i=1

ξipi(X)

w(X) :=
p(X)−p(z)

X−z

return π :=w(x)G1

PC.Check(rk,c, z,v,π,ξ)→ 0/1

C :=
n∑
i=1

ξici

v :=
n∑
i=1

ξivi

check e(C−vG1,G2)
?
= e(π,xG2−zG2)

return 1 if check passes, 0 otherwise

Figure 3.1: KZG polynomial commitment scheme

The following example demonstrates these abstract operations with concrete values,

showing how polynomial commitments, evaluation proofs, and verification work in

practice over a small finite field.

Example 3.2.1. Consider a simple KZG commitment over F23 with secret x = 7. The

prover commits to polynomials p1(X) = 2X+5 and p2(X) =X2 +3.
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Setup The commitment key contains:

ck= ({G1,7G1,49G1}) = ({G1,7G1,3G1})

rk= (7G2)

Commit The prover computes commitments:

c1 = p1(7)G1 = (2 ·7+5)G1 = 19G1

c2 = p2(7)G1 = (72 +3)G1 = 6G1

Open For evaluation point z = 5 and opening challenge ξ = 10:

The prover forms the linear combination:

p(X) = ξp1(X)+ ξ2p2(X)

= 10(2X+5)+100(X2 +3)

= 8X2 +20X+5

Evaluating at z = 5:

p(5) = 8 ·25+20 ·5+5 = 305 = 6

The witness polynomial:

w(X) =
p(X)−p(5)

X−5
=

8X2 +20X+5−6
X−5

=
8X2 +20X−1

X−5
= 8X+14

The proof is π = w(7)G1 = (8 ·7+14)G1 = 70G1 =G1.
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Check The verifier computes:

C = ξc1 + ξ2c2 = 10 ·19G1 +100 ·6G1 = 8G1

v = ξv1 + ξ2v2 = 10 ·15+100 ·5 = 6

where v1 = p1(5) = 15 and v2 = p2(5) = 28 = 5.

The verification checks:

e(C−vG1,G2)
?
= e(π,xG2− zG2)

e(2G1,G2)
?
= e(G1,2G2)

By bilinearity: e(2G1,G2) = e(G1,G2)
2 = e(G1,2G2)

This example illustrates the core mechanism of KZG commitments. The commitment

ci = pi(x)G1 binds the prover to polynomial pi without revealing it, as extracting pi from

ci requires solving the discrete logarithm problem. The proof π = w(x)G1 demonstrates

knowledge of the committed polynomial’s evaluation through polynomial division, that

is the existence of w(X) = p(X)−p(z)
X−z as a valid polynomial proves that p(z) = v. The

verification equation e(C−vG1,G2)= e(π,xG2−zG2) leverages the bilinearity property

to check this polynomial relation without knowing x or the polynomial coefficients.

The following proofs formalize these observations, demonstrating that this construction

satisfies the required properties of a polynomial commitment scheme.

Theorem 3.2.2 (Completeness). The polynomial commitment scheme PC constructed

above satisfies the completeness property.

Proof. Assume that deg(p) ≤ D and v = p(z). The goal is to show that

PC.Check(rk,c, z,v,π,ξ) = 1. For each i ∈ [n], the commitment ci is computed as ci =

pi(x)G1. When computing the linear combination, C =
∑n

i=1 ξ
ici =

∑n
i=1 ξ

ipi(x)G1 =

p(x)G1, where p(X) =
∑n

i=1 ξ
ipi(X). Similarly, v =

∑n
i=1 ξ

ivi =
∑n

i=1 ξ
ipi(z) = p(z).

The witness polynomial w(X) = p(X)−p(z)
X−z is a polynomial because X − z divides

p(X)−p(z) by Corollary 2.3.4.
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Now, verifying the pairing equation:

e(C−vG1,G2) = e(p(x)G1−p(z)G1,G2)

= e((p(x)−p(z))G1,G2)

= e

(
p(x)−p(z)

x− z
(x− z)G1,G2

)
= e(w(x)(x− z)G1,G2)

= e(w(x)G1,(x− z)G2)

= e(π,xG2− zG2)

Thus, the verification equation is satisfied, and PC.Check outputs 1, proving

completeness.

Theorem 3.2.3 (Succinctness). The polynomial commitment scheme PC constructed

above satisfies the succinctness property.

Proof. For a list of n polynomials, the scheme requires:

• Commitment size: n elements from G1, so |c|= n ·poly(λ)
• Evaluation proof size: 1 element from G1, so |π|= poly(λ)

• Verification time: Two pairings and one scalar multiplication in G1 of size n, so

time(Check) = n ·poly(λ)

None of these quantities depends on the degree D of the committed polynomials, meeting

the succinctness requirement.

Now the construction satisfies the extractability property. First, an intermediary property

called evaluation binding is introduced, then it is shown how this implies extractability in

the algebraic group model.

Definition 3.2.4 (Evaluation Binding). A polynomial commitment scheme PC satisfies

evaluation binding if for every maximum degree bound D ∈ N and efficient adversary
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A= (A1,A2) the following probability is negligible in the security parameter λ:

Pr



v ̸= v′

∧
PC.Check(rk,c, z,v,π,ξ) = 1

∧
PC.Check(rk,c, z,v′,π′, ξ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PC.Setup(1λ,D)

(c, z,v,v′, ←A1(ck, rk)

Sample opening challenge ξ

(π,π′)←A2(ξ)


Lemma 3.2.5 (Evaluation Binding). If the bilinear group sampler BP satisfies the

SDH assumption, the KZG polynomial commitment scheme constructed above achieves

evaluation binding.

Proof. Suppose for contradiction that there exists an efficient adversaryA=(A1,A2) that

breaks evaluation binding with non-negligible probability. An adversary B that breaks

the SDH assumption can be constructed. The concrete construction can be found in

[MBKM19, Lemma B.9].

B receives as input a bilinear group bp and a SDH challenge Σ = {{xiG1}Di=0,xG2}.
It runs A1(ck, rk) where ck = (bp,{xiG1}Di=0) and rk = (bp,xG2) to obtain (c, z,v,v′, .

Then it samples ξ and runs A2(ξ) to obtain (π,π′).

Let C =
∑n

i=1 ξ
ici, v =

∑n
i=1 ξ

ivi, and v′ =
∑n

i=1 ξ
iv′i. Since v ̸= v′, with high

probability v ̸= v′ for a random ξ. If both proofs pass verification, then:

e(C−vG1,G2) = e(π,xG2− zG2)

e(C−v′G1,G2) = e(π′,xG2− zG2)

If z = x, then B can arbitrarily break the SDH assumption by outputting (a, 1
z+aG1) for

a ∈ Fq \{−z}. Otherwise, if π ̸= π′, rearranging the equations:

e((v′−v)G1,G2) = e(π−π′,xG2− zG2)

This implies (v′−v)G1 = (x− z)(π−π′), and thus:

1
x− z

G1 =
π−π′

v′−v
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Now, B output (−z, π−π′v′−v ), which breaks the SDH assumption.

If π= π′ but v ̸= v′, the verification equations are contradictory, so this case cannot occur.

Therefore, B successfully breaks the SDH assumption whenever A breaks evaluation

binding, completing the proof.

Theorem 3.2.6 (Extractability). If the KZG polynomial commitment scheme satisfies

evaluation binding, then it also satisfies extractability in the algebraic group model.

Proof. The proof shows that for any algebraic adversary A, there exists an efficient

extractor E that extracts the committed polynomials. In the algebraic group model, when

A outputs a group element Y ∈G1, it must also provide the representation of Y in terms

of previously seen group elements. For each commitment ci output by A, since A is

algebraic, it also outputs coefficients {ai,j}Dj=0 such that:

ci =
D∑
j=0

ai,j · (xjG1)

The extractor E defines the polynomial pi(X) =
∑D

j=0ai,jX
j for each commitment ci.

This ensures that ci = pi(x)G1, which means pi is a valid polynomial corresponding to

the commitment ci. Now it must be shown that if PC.Check(rk,c, z,v,π,ξ) = 1, then

v = p(z) with overwhelming probability. Suppose for contradiction that v ̸= p(z) with

non-negligible probability. Let p(X) =
∑n

i=1 ξ
ipi(X) and v =

∑n
i=1 ξ

ivi. The adversary

can compute the honest proof π′ = w′(x)G1 where w′(X) = p(X)−p(z)
X−z , which would

satisfy:

e(C−p(z)G1,G2) = e(π′,xG2− zG2)

However, by assumption, the adversary produced a proof π that satisfies:

e(C−vG1,G2) = e(π,xG2− zG2)

Where v ̸= p(z) with high probability. This yields two valid proofs for different

evaluations at the same point, contradicting the evaluation binding property. Therefore,

with overwhelming probability, v = p(z) whenever verification passes. Since both

deg(p)≤D (by construction) and v = p(z), the extractability property holds.
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A concrete implementation of the KZG polynomial commitment scheme in SageMath

is provided in Appendix 1, demonstrating the practical construction of the algorithms

described in this section.

The KZG Trapdoor The KZG commitment scheme’s security relies critically on the

secrecy of the trapdoor x ∈ Fq used in generating the SRS {xiG1}Di=0. Knowledge of x

allows an adversary to break the binding property by creating valid opening proofs for

arbitrary evaluations.

Specifically, given commitment c= p(x)G1 for any polynomial p, an adversary knowing

x can claim any evaluation p(z) = v′ (even when p(z) ̸= v′) by constructing:

π′ =
p(x)−v′

x− z
G1

This proof satisfies the verification equation e(c− v′G1,G2) = e(π′,xG2− zG2) despite

the false claim. This demonstrates how trapdoor knowledge violates knowledge

soundnessthe adversary can ”prove” false statements without knowing a valid witness.

On the other hand, this same trapdoor enables the zero-knowledge property in

zk-SNARKs. A simulator with access to x can generate valid proofs without knowing

the witness, producing proofs indistinguishable from honestly generated ones.

3.3 Optimization

The KZG polynomial commitment scheme offers significant opportunities for

optimization, particularly in scenarios involving multiple polynomial evaluations or

verification of polynomial relations. These optimizations are crucial for practical

zk-SNARKs constructions where verification efficiency is paramount.

Batching Pairing Equations The verification procedure PC.Check requires computing

a pairing equation of the form e(C − vG1,G2) = e(π,xG2− zG2) for each polynomial

evaluation. When a protocol requires verifying multiple such equations, the

computational cost can become significant, as pairing operations are relatively expensive.
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To reduce this cost, the pairing equation can be transformed to ensure that the G2

argument in the right-hand side pairing remains constant:

e(C−vG1,G2) = e(π,xG2− zG2)

= e(π,xG2) · e(π,−zG2)

= e(π,xG2) · e(−zπ,G2)

This transformation allows rewriting the verification equation as:

e(C−vG1 + zπ,G2) = e(π,xG2)

Now suppose n equations of this form need verification:

e(Ci−viG1 + ziπi,G2) = e(πi,xG2) for i ∈ [n]

Instead of computing 2n pairings, these equations can be batched together to compute

just 2 pairings. The verifier samples a random field element r←$ Fq and uses the identity∏
i e(Gi,H)r

i
= e(

∑
i r

iGi,H) to check a single equation:

e

(
n∑

i=1

ri(Ci−viG1 + ziπi),G2

)
= e

(
n∑

i=1

riπi,xG2

)

This batching technique maintains security because if any individual equation e(Ci−
viG1+ziπi,G2) ̸= e(πi,xG2) for some i ∈ [n], then the batched verification accepts with

probability at most n
|Fq | , which is negligible. Figure 3.2 summarizes the batch verification

construction.
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PC.BatchCheck(rk, [ci]
n
i=1, [zi]

n
i=1, [vi]

n
i=1, [πi]

n
i=1, [ξi]

n
i=1)→ 0/1

Sample randomness r←$ Fq; L← 0 ∈G1; R← 0 ∈G1

For i= 1, . . . ,n :

Ci←
|ci|∑
j=1

ξji · ci,j ; vi←
|vi|∑
j=1

ξji ·vi,j

L← L+ ri · (Ci−vi ·G1 +zi ·πi); R←R+ ri ·πi

check e(L,G2)
?
= e(R,xG2)

return 1 if check passes, 0 otherwise

Figure 3.2: KZG batch verification

Opening Linear Combinations of Polynomials In zk-SNARKs constructions, the

verifier often needs to check non-linear combinations of polynomials, for example:

p1(X)+p2(X)p3(X) = p4(X)

A standard approach is to evaluate each polynomial at a random point z ∈ Fq and verify

p1(z)+p2(z)p3(z) = p4(z) (which will be explained in detail in Section 5.2). This would

require the prover to evaluate and open all four polynomials at the point z, sending four

field elements to the verifier.

The optimization leverages the linearity of polynomial commitments and their

homomorphic properties. That is, operations on commitments correspond to the same

operations on the committed values. For KZG commitments, this means that for

polynomials f(X) and g(X) with commitments cf and cg, and any scalar a,b ∈ Fq, the

commitment to a ·f(X)+ b ·g(X) equals a · cf + b · cg. This property enables computing

commitments to linear combinations of polynomials directly from individual polynomial

commitments, without knowing the polynomials themselves. The key insight is that only

some polynomials need explicit evaluation, while others can be represented as linear

combinations.

First, the prover evaluates just p2 at point z to obtain v2 = p2(z) ∈ Fq. Then, a derived
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polynomial is defined:

p5(X) := p1(X)+v2p3(X)−p4(X)

The original relation holds if and only if p5(z) = 0. Now, the prover can execute a single

batched opening:

π← PC.Open(ck,p, z,ξ)

where p= [p2,p5] and ξ a random challenge.

On the verification side, the verifier computes the commitment to p5 as c5 = c1+v2c3−c4,

and performs a single verification:

PC.Check(rk,c, z,v,π,ξ)

where c= [c2, c5] and v = [v2,0].

This approach reduces the communication from four field elements (evaluations of p1, p2,

p3, and p4) to just one (v2, since p5(z) = 0 is implicit). The technique extends naturally to

more complex polynomial relations, allowing significant efficiency gains in zk-SNARKs

protocols that involve verifying numerous polynomial constraints.
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CHAPTER 4

PREPROCESSING ZK-SNARKS WITH UNIVERSAL SRS

This chapter establishes the theoretical foundations of preprocessing zk-SNARKs with

universal structured reference strings (SRS) that underlie the protocols in Chapter 6.

The exposition begins with interactive proof systems, which establish the foundational

model of a prover convincing a verifier through multi-round communication. It then

introduces argument systems, which relax soundness requirements to hold only against

computationally bounded adversaries, enabling the use of cryptographic assumptions for

efficiency. The concept of preprocessing arguments with universal SRS emerges as a

crucial framework that allows a single trusted setup to support multiple circuits. The

combination of this argument system framework with polynomial commitment schemes

like KZG from Chapter 3 yields the complete zk-SNARKs construction, as formally

demonstrated in Marlin and implicitly utilized in Plonk.

4.1 Interactive proof systems

Interactive proof systems [GMR85] enable dynamic message exchange between prover

and verifier for statement verification. A language L is a set of strings representing

decision problems. For instance, PRIMES = {x ∈ {0,1}∗ | x encodes a prime number}.

Languages can be defined via relations: for R⊆ {0,1}∗×{0,1}∗, the language LR = {x :

∃w such that (x,w) ∈R} where x is the instance and w the witness.

Interactive proof systems extend NP verification by allowing multiple communication

rounds with randomized verification. The system (P,V ) must satisfy:

Completeness For every x ∈ L, the verifier accepts with high probability when

interacting with the honest prover.

Soundness For every x /∈ L and any prover strategy P ∗, the verifier rejects with high

probability.
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4.2 Argument systems

Argument systems [BCC88] are a variant of interactive proof systems where soundness

holds only against computationally bounded provers. This distinction is crucial in

cryptographic applications where adversaries typically have bounded computational

resources.

An argument system for a language L is an interactive protocol (P,V ) that satisfies:

Completeness For every x ∈ L, when the honest prover P and verifier V interact on

input x, the verifier accepts with probability 1.

Computational soundness For every x /∈ L and any polynomial-time prover strategy

P ∗, when P ∗ and verifier V interact on input x, the verifier rejects with high probability.

Argument systems can be more efficient than proof systems because they leverage

cryptographic assumptions to achieve succinctnessthe property that proof size and

verification time are significantly smaller than the size of the statement being proven.

4.3 Preprocessing arguments with universal SRS

This section provides semi-formal definitions of preprocessing arguments with universal

SRS. For fully formal mathematical definitions, readers are referred to [CHM+20, Section

7].

An indexed relation R is a set of triples (i,x,w) where i is the index, x is the instance,

and w is the witness. The corresponding indexed language L(R) is the set of pairs (i,x)

for which there exists a witness w such that (i,x,w) ∈R.

For example, the indexed relation for satisfiable boolean circuits consists of triples where

i is the description of a boolean circuit, x is a partial assignment to its input wires, and w

is an assignment to the remaining wires that makes the circuit evaluate to 1.

Given a size bound N ∈ N, RN denotes the restriction of R to triples (i,x,w) with

|i| ≤N .
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A preprocessing argument with universal SRS is a tuple ARG = (G,I,P ,V) with the

following components:

ARG.G(1λ,N)→ srs The generator algorithm takes a security parameter λ (in unary)

and a size bound N , and outputs a SRS srs that supports indices of size up to N .

ARG.I(srs, i)→ (ipk, ivk) The indexer is a deterministic preprocessing algorithm that

takes the SRS srs and an index i of size at most N , and outputs an index proving key ipk

for the prover and an index verification key ivk for the verifier.

ARG.P(ipk,x,w) ↔ ARG.V(ivk,x) The prover and verifier engage in an interactive

protocol where the prover uses the index proving key ipk, an instance x, and a witness w,

while the verifier uses the index verification key ivk and the instance x. At the conclusion

of the interaction, the verifier outputs a bit indicating acceptance (1) or rejection (0).

A preprocessing argument with universal SRS must satisfy two basic properties:

Completeness For any triple (i,x,w) ∈ RN , when the honest prover with input

(ipk,x,w) interacts with the honest verifier with input (ivk,x), the verifier outputs 1 with

probability 1. This ensures that honest provers with valid witnesses can always convince

verifiers through the interactive protocol.

Soundness For any pair (i,x) ̸∈ L(RN ) and any efficient adversarial prover strategy,

the probability that the prover can convince the verifier to accept is negligible in the

security parameter. This ensures that no efficient adversary can convince the verifier of a

false statement.

4.4 From arguments to zk-SNARKs

To achieve the full power of preprocessing zk-SNARKs with universal SRS requires

augmenting preprocessing arguments with additional properties and transforming them

into non-interactive protocols. This section describes this progression and the associated
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terminology.

Knowledge soundness An argument system satisfies knowledge soundness if for any

efficient adversarial prover strategy that causes the verifier to output 1 when interacting

on input (i,x), there exists an efficient extraction algorithm that can extract a witness w

such that (i,x,w) ∈ RN , except with negligible probability in the security parameter.

This ensures that successful provers must actually know a valid witness, rather than

simply exploiting the interactive nature of the protocol. This is stronger notion than

basic soundness because soundness only guarantees that no prover can convince the

verifier of a false statement, while knowledge soundness additionally ensures that any

convincing prover possesses the underlying witness. The extraction property is crucial

for cryptographic applications where protocols need to guarantee that provers have actual

knowledge, not merely the ability to produce valid-looking proofs through other means.

Zero knowledge The interactive protocol reveals nothing about the witness w beyond

the validity of the statement (i,x) ∈ L(R). Formally, there exists an efficient simulator

that, without access to any witness, can simulate the entire transcript of the interaction

between prover and verifier that is computationally indistinguishable from a real

interaction. This property guarantees that the verifier learns nothing about the witness

through the interaction beyond what is implied by the truth of the statement being proven.

Efficiency properties A preprocessing argument with universal SRS should satisfy

several efficiency properties:

• Index efficiency: The running time of the proverP(ipk,x,w) is polyλ(|i|), independent

of the size of the universal SRS.

• Proof succinctness: The size of the communication transcript between prover and

verifier is poly(λ).

• Verifier succinctness: The running time of the verifier V(ivk,x) is poly(λ+ |x|),
independent of the size of the index i.
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The Fiat-Shamir transform To convert an interactive argument system into a

non-interactive one, the Fiat-Shamir transform [FS86] is employed. This technique

replaces the verifier’s random challenges with deterministic hash function evaluations

of the protocol transcript up to that point, effectively allowing the prover to simulate

the entire interaction without requiring any input from the verifier beyond the initial

statement.

When an interactive argument system is public-coin (meaning that all messages from the

verifier are random challenges), the Fiat-Shamir transform can be applied by modeling

the hash function as a random oracle. This transformation preserves completeness, and

in many cases, also preserves soundness, knowledge soundness, and zero knowledge

properties.

Terminology progression With these properties and transformations, a clear

terminology progression emerges:

• An argument system with efficiency properties (succinctness) that is made

non-interactive using the Fiat-Shamir transform becomes a succinct non-interactive

Argument (SNARG).

• A SNARG with knowledge soundness becomes a succinct non-interactive argument of

knowledge (SNARK).

• A SNARKs with zero knowledge becomes a zero-knowledge SNARKs (zk-SNARKs).

Therefore, a preprocessing zk-SNARKs with universal SRS is a non-interactive

argument system that has a universal SRS, allows preprocessing of the index, satisfies

completeness and knowledge soundness, achieves zero knowledge, and meets the

efficiency requirements of succinctness for both proof size and verification time.

4.5 Setup Models for zk-SNARKs

The practical deployment of zk-SNARKs requires careful consideration of how the SRS

is generated. While the trusted setup model is conceptually simple, it creates a critical

vulnerability: if the single trusted party retains the trapdoor or is compromised, the entire

system’s soundness fails. This is particularly problematic for decentralized applications

like cryptocurrencies where real monetary value is at stake and finding a universally
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trusted party is nearly impossible. Moreover, protocol upgrades requiring new trusted

setups would repeatedly reintroduce these trust assumptions. These practical challenges

motivate exploring stronger setup models that distribute or eliminate trust. The setup

models for zk-SNARKs as follow:

Trusted Setup In the trusted setup model [CF01], a single party generates the SRS

using secret randomness (the trapdoor) and then destroys this randomness. The entire

system’s security relies on this party’s honesty. While simple to implement, this model

creates a single point of failure: if the party retains the trapdoor or shares it with others, the

soundness of the system is compromised. This weakness makes trusted setup unsuitable

for decentralized applications where no single party can be universally trusted.

Subvertible Setup Subvertible setup model [BFS16, ABLZ17] represent the strongest

theoretical setup model, maintaining security even when the setup algorithm itself may

be maliciously constructed. Bellare et al. [BFS16] proved a fundamental impossibility:

no proof system can simultaneously achieve subversion soundness and (even standard)

zero-knowledge. This impossibility result shapes the landscape of achievable security

properties and motivates the search for practical alternatives.

Updatable Setup The updatable setup model [GKM+18] provides a practical middle

ground between the simplicity of trusted setup and the theoretical strength of subvertible

setup. Multiple parties sequentially contribute randomness to the SRS, with each party

updating the existing SRS and proving they performed the update correctly. Security

holds if at least one party in the update sequence is honest and destroys their randomness.

The key insight is that certain SRS structures support homomorphic updates without

revealing individual contributions. For KZG with SRS {xiG1}Di=0, a party updates x

to x · δ for their secret δ, transforming the SRS to {(xδ)iG1}Di=0. The final trapdoor is the

product of all contributions, unknown to any single party.

The setup models form a hierarchy where stronger models imply weaker ones. As shown

by Groth et al. [GKM+18], a proof system satisfying security with subvertible setup

also satisfies security with updatable setup (Lemma 2), and one satisfying security with
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updatable setup also satisfies security with trusted setup (Lemma 1).

Theoretical Landscape and KZG The impossibility of achieving both subversion

soundness and zero-knowledge [BFS16] establishes the fundamental limits of what can

be achieved in theory. The KZG polynomial commitment scheme, as analyzed in Sonic

[MBKM19], achieves subversion zero-knowledge: the zero-knowledge property holds

even against adversaries who maliciously generate the SRS. However, KZG can only

achieve updatable soundness, not subversion soundness. This positions updatable setups

as the strongest practically achievable model: they provide the maximum soundness

guarantee possible while preserving zero-knowledge.

Why Updatable Setups Matter The updatable setup model represents the optimal

balance between security and practicality. It circumvents the theoretical impossibility

while enabling real-world deployment through ceremonies where multiple participants

can contribute randomness. The assumption that at least one participant is honest is

far more realistic than trusting a single party. Furthermore, the public verifiability of

updates provides transparency, and new participants can join without invalidating previous

contributions. The KZG polynomial commitment scheme’s inherent monomial structure

naturally supports these updatable ceremonies, making it the foundation for modern

preprocessing zk-SNARKs that achieve both strong security guarantees and practical

deployability.
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CHAPTER 5

TECHNIQUES IN ZK-SNARKS

The construction of efficient zk-SNARKs relies on several fundamental techniques

that transform computational problems into algebraic statements that can be verified

succinctly. These techniques serve as building blocks for the practical zk-SNARKs

constructions covered in Chapter 6.

This chapter begins with polynomial encoding, which provides a way to represent

computational statements as polynomial relations. Next, polynomial identity testing is

examined, a technique that enables efficient verification of polynomial relations. The

univariate sumcheck that will be used in Marlin [CHM+20] is then explored, which allows

for efficient verification of claims about polynomial sums over large domains. Finally,

the permutation argument is presented, an essential component for enforcing the ”copy

constraint” that will be used in Plonk [GWC19].

5.1 Polynomial encoding

Many zk-SNARKs constructions rely on encoding computational problems into

polynomial relations, a critical step that allows leveraging the algebraic properties of

polynomials and the efficiency of the KZG commitment scheme. This polynomial

encoding transforms computational statements, such as circuit satisfaction or constraint

systems, into relationships between polynomials that can be efficiently verified.

The general approach begins with representing a computation as a constraint system over

a finite field Fq. Different zk-SNARKs protocols may use different types of constraint

systemssuch as Rank-1 Constraint Systems (R1CS) [GGPR13], arithmetic circuits, or

custom constraint formats like those in Plonk [GWC19]. But, the fundamental principle

remains the same. The computational statement and its witness (the solution or proof)

are encoded as polynomials whose properties and relationships capture the original

computational problem.

Consider working with multiplicative subgroup H = {1,g,g2, . . . ,gn−1} of Fq, where

g is generator of H or equivalently a primitive n-th root of unity. The values in

the constraint system (such as witness values, constraint coefficients, or circuit wire
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values) are mapped to evaluations of polynomials at points in this subgroup. Through

interpolation, polynomials are constructed that pass through these specific evaluation

points, effectively encoding the entire computation.

The field Fq and multiplicative subgroup H require specific structural properties to enable

FFT-based polynomial operations. As detailed in Section 2.5, q must be chosen such that

q−1 contains a large power of 2 factor, allowing H to have size n= 2k for some k. This

power-of-2 structure is essential for the FFT algorithm to achieve O(n logn) complexity

for polynomial interpolation, making these encodings computationally feasible even for

large-scale constraint systems.

5.2 Polynomial identity testing

Polynomial identity testing enables efficient verification of polynomial relations. Rather

than checking if f(X) = g(X) by comparing all coefficients, evaluate both at random

r←$ F and check f(r) = g(r). By Corollary 2.3.7, if f ̸= g with deg(f − g) ≤ d, then

Pr[f(r) = g(r)]≤ d
|F| .

In zk-SNARKs, verification often involves relations over domains. For H = ⟨g⟩ ⊆ Fq, to

verify f(a) = g(a) for all a ∈ H , use the vanishing polynomial vH(X) = Xn− 1. The

relation holds if and only if vH(X) divides f(X)−g(X), meaning there exists q(X) such

that:

f(X)−g(X) = vH(X)q(X)

In a zk-SNARK protocol using the KZG commitment scheme, the verification proceeds

as follows:

1. The prover commits to polynomials f , g, and q using KZG commitments.

2. The verifier samples a random challenge point r←$ Fq.

3. The prover provides evaluations f(r), g(r), and q(r).

4. The verifier samples an opening challenge ξ←$ Fq.

5. The prover provides KZG opening proofs for the evaluations.

6. The verifier checks that the KZG opening proofs verify correctly and that the
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polynomial identity holds at point r:

f(r)−g(r)
?
= vH(r)q(r)

If this check passes, by Lemma 2.3.8, the verifier is convinced with overwhelming

probability that the identity holds as a formal polynomial identity, which implies that the

original relation holds on all of H . The soundness error is negligible since r is sampled

from the exponentially large field Fq.

This approach transforms verification of a computation involving numerous constraints

into checking a single equation at a random point. The verifier can compute vH(r) =

rn−1 efficiently in O(logn) time using square-and-multiply exponentiation, making the

verification process highly efficient compared to the size of H .

Remark 5.2.1. The polynomial identity testing technique naturally extends to more

complex polynomial relations involving multiple polynomials. For example, to verify

a multiplicative relation f(a)g(a) = h(a) for all a ∈ H , the protocol checks if vH(X)

divides f(X)g(X)−h(X). Similarly, for quadratic relations like f(a)2−g(a)h(a) = 0 or

multi-polynomial constraints like f(a)+g(a)+h(a) = j(a), the same pattern is followed:

reformulate as a divisibility check and evaluate at a random point. This flexibility

allows polynomial identity testing to handle the diverse constraint types that arise in

zk-SNARK constructions, including arithmetic circuit constraints, R1CS relations, and

custom constraint systems like those in PLONK.

5.3 Univariate sumcheck

The univariate sumcheck provides an efficient method to verify the sum of a polynomial’s

evaluations over a large domain. For a polynomial p(X) of degree at most D, the

protocol verifies claims about the sum
∑

a∈H p(a). The following results are adapted from

[Tha22]. First, a key property regarding polynomial sums over multiplicative subgroups

is established.

Lemma 5.3.1. Let H be a multiplicative subgroup of Fq of size n. For any polynomial

f(X) of degree less than n, the following holds:

∑
a∈H

f(a) = f(0) · |H|
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In other words, the sum of evaluations of f over H depends only on the constant term of

f .

Proof. By linearity, it suffices to prove the result for monomials. For any monomial Xm

with 0 <m< n, it must be shown that
∑

a∈H am = 0.

Since H is a multiplicative subgroup of order n, it is cyclic. Let g be a generator of H .

Then: ∑
a∈H

am =
n−1∑
j=0

(gj)m =

n−1∑
j=0

gjm

If gcd(m,n) = 1, then gm is also a generator of H . As j ranges from 0 to n−1, the values

gjm simply enumerate all elements of H in a different order. If this sum is multiplied by

gm ̸= 1:

gm
n−1∑
j=0

gjm =
n−1∑
j=0

g(j+1)m =
n−1∑
j=0

gjm

where the last equality follows because multiplication by gm merely permutes the

elements of H . This implies (gm−1) ·
∑

a∈H am = 0. Since gm ̸= 1 in a field, it must be

that
∑

a∈H am = 0.

If gcd(m,n) = d > 1, then gm generates a proper subgroup of H of order n/d. In this

case, as j ranges from 0 to n−1, each element in this subgroup appears exactly d times.

By a similar argument as above, the sum over this subgroup is zero, so the overall sum is

also zero.

For the monomial X0 = 1, clearly
∑

a∈H 1 = n= |H|.

By linearity, for any polynomial f(X) = f0 +f1X+ · · ·+fn−1X
n−1 with deg(f)< n:

∑
a∈H

f(a) =
∑
a∈H

(f0 +f1a+ · · ·+fn−1a
n−1)

= f0
∑
a∈H

1+f1
∑
a∈H

a+ · · ·+fn−1
∑
a∈H

an−1

= f0 · |H|+f1 ·0+ · · ·+fn−1 ·0

= f0 · |H|= f(0) · |H|
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From this lemma, a key result for the sumcheck protocol that generalizes to arbitrary

claimed sums σ can be derived.

Theorem 5.3.2. Let H be a multiplicative subgroup of Fq of size n, and let f(X) be

a polynomial of degree at most D. Then
∑

a∈H f(a) = σ if and only if there exist

polynomials h(X) ∈ F<D−n+1
q [X] and g(X) ∈ F<n−1

q [X] satisfying:

f(X) = h(X) ·vH(X)+X ·g(X)+
σ

|H|

where vH(X) =Xn−1 is the vanishing polynomial of H .

Proof. First, suppose the equation holds. Then for any a ∈H:

f(a) = h(a) ·vH(a)+a ·g(a)+ σ

|H|

= h(a) ·0+a ·g(a)+ σ

|H|

= a ·g(a)+ σ

|H|

Summing over all elements in H:

∑
a∈H

f(a) =
∑
a∈H

a ·g(a)+
∑
a∈H

σ

|H|

=
∑
a∈H

a ·g(a)+σ

The polynomial a · g(a) has no constant term, so by Lemma 5.3.1,
∑

a∈H a · g(a) = 0.

Therefore,
∑

a∈H f(a) = σ.

Conversely, suppose
∑

a∈H f(a) = σ. Define a new polynomial f ′(X) = f(X)− σ
|H| .
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Then:

∑
a∈H

f ′(a) =
∑
a∈H

f(a)−
∑
a∈H

σ

|H|

= σ− σ

|H|
· |H|

= 0

By polynomial division, f ′(X) = h(X) · vH(X) + r(X) where deg(r) < n. Since

vH(a) = 0 for all a ∈H:

∑
a∈H

r(a) =
∑
a∈H

f ′(a)−
∑
a∈H

h(a) ·vH(a)

= 0−0 = 0

By Lemma 5.3.1,
∑

a∈H r(a) = r(0) · |H|, so r(0) = 0. This means r(X) has no constant

term and can be written as r(X) = X · g(X) for some polynomial g(X) with deg(g) <

n−1.

Therefore, f ′(X) = h(X) ·vH(X)+X ·g(X), which implies:

f(X) = h(X) ·vH(X)+X ·g(X)+
σ

|H|

This completes the proof.

This characterization serves as the foundation for the univariate sumcheck protocol, which

can be efficiently implemented using the KZG polynomial commitment scheme:

1. The prover commits to polynomials f(X), h(X), and g(X) using KZG commitments

and claims that
∑

a∈H f(a) = σ.

2. The verifier samples a random challenge point r←$ Fq.

3. The prover provides evaluations f(r), h(r), and g(r).

4. The verifier samples an opening challenge ξ←$ Fq.

5. The prover provides KZG opening proofs for the evaluations.
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6. The verifier checks that the KZG opening proofs verify correctly and that the

polynomial identity holds at point r:

f(r)
?
= h(r)vH(r)+ r ·g(r)+ σ

|H|

If this check passes, the verifier is convinced with overwhelming probability by Lemma

2.3.8 that the claimed sum is correct. The verifier gains efficiency by reducing verification

of a sum with potentially many terms to checking a single identity at a random point,

coupled with the succinctness properties of the KZG commitment scheme.

5.4 Permutation Argument

This section explores the technique introduced in Plonk that uses a permutation argument

operating on univariate polynomials evaluated over multiplicative subgroups. First, the

meaning of ”extended permutations” that work across multiple polynomials is defined.

Consider a multiplicative subgroup H = ⟨g⟩ of order n in Fq, and a permutation σ :

[kn]→ [kn] for some positive integer k. For polynomials f1, . . . ,fk,g1, . . . ,gk ∈ F<n
q [X],

the notation (g1, . . . ,gk) = σ(f1, . . . ,fk) means the following:

Define the sequences (f(1), . . . ,f(kn)) and (g(1), . . . ,g(kn)) in Fkn
q by:

f((j−1)·n+i) := fj(g
i), g((j−1)·n+i) := gj(g

i)

for each j ∈ [k], i ∈ [n]. Then (g1, . . . ,gk) = σ(f1, . . . ,fk) if and only if g(i) = f(σ(i)) for

each i ∈ [kn].

In other words, the extended permutation relates the evaluations of multiple polynomials

at points in H according to the permutation σ. This generalization allows capturing

more complex relationships between polynomials, which is necessary for representing

the wiring constraints in arithmetic circuits.

Before presenting the main result, a key lemma that provides the foundation for testing

whether two sequences follow a permutation relationship is first established.

Lemma 5.4.1. Fix any permutation σ of [n], and any sequences (a1, . . . ,an), (b1, . . . , bn)∈
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Fn
q . If ∏

i∈[n]
(ai+β · i+γ) =

∏
i∈[n]

(bi+β ·σ(i)+γ)

with probability larger than n
|Fq | over uniform β,γ ∈ Fq, then bi = aσ(i) for all i ∈ [n].

Proof. By Lemma 2.3.8 and the assumption, the following equality of polynomials holds

in Fq[X,Y ]:
n∏

i=1

(ai+ iX+Y )≡
n∏

i=1

(bi+σ(i)X+Y )

Because Fq[X,Y ] is a unique factorization domain1 where the invertible elements are

exactly F∗q. The linear factors in the above products are irreducible. Thus, there must be

a one-to-one map between the factors of each side, such that each factor on the left side

equals a constant multiple of a factor on the right side.

Moreover, since the coefficient of Y in all terms on both sides is 1, these constant

multiples must all be 1. Therefore, this mapping must match each factor on the left side

to one on the right side with the same coefficient for X . In summary, for all i ∈ [n]:

aσ(i)+σ(i)X+Y ≡ bi+σ(i)X+Y

This implies that bi = aσ(i) for all i ∈ [n].

Based on this lemma, the main theorem that forms the foundation of the permutation

argument in Plonk can now be stated. The notation Li(X) denotes the i-th Lagrange

basis polynomial for H at point gi, which satisfies Li(g
i) = 1 and Li(a) = 0 for all

a ∈H \{gi}.

Theorem 5.4.2. Let H = ⟨g⟩ be a multiplicative subgroup of Fq of order n, and let σ be

a permutation on [kn]. Let f1, . . . ,fk,g1, . . . , gk ∈ F<n
q [X] be polynomials of degree less

than n. Define:

1A unique factorization domain (UFD) is a ring in which every non-zero non-unit element can be written
as a product of irreducible elements in an essentially unique way. Multivariate polynomial rings over fields
are UFDs [MMS96, Corollary 13.2.11].
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f ′j(X) = fj(X)+β ·SIDj
(X)+γ

g′j(X) = gj(X)+β ·Sσj (X)+γ

where SIDj
(gi) = (j− 1) · n+ i and Sσj (g

i) = σ((j− 1) · n+ i) for each i ∈ [n]. Let

f ′(X) =
∏

j∈[k] f
′
j(X) and g′(X) =

∏
j∈[k] g

′
j(X). If there exists a polynomial Z(X) of

degree less than n such that with non-negligible probability:

1. L1(a) · (Z(a)−1) = 0 for all a ∈H , and

2. Z(a) ·f ′(a) = g′(a) ·Z(a ·g) for all a ∈H

then (g1, . . . ,gk) = σ(f1, . . . ,fk).

Proof. The first condition ensures that Z(g) = 1. From the second condition, by

induction, for each i ∈ [n]:

Z(gi+1) =
∏

1≤j≤i

f ′(gj)

g′(gj)

Since gn+1 = g:

Z(g) = Z(gn+1) =
∏
j∈[n]

f ′(gj)

g′(gj)

This implies:

1 =
∏
j∈[n]

f ′(gj)

g′(gj)∏
j∈[n]

f ′(gj) =
∏
j∈[n]

g′(gj)

∏
j∈[k]

∏
i∈[n]

f ′j(g
i) =

∏
j∈[k]

∏
i∈[n]

g′j(g
i)

∏
j∈[k]

∏
i∈[n]

(fj(g
i)+β ·SIDj

(gi)+γ) =
∏
j∈[k]

∏
i∈[n]

(gj(g
i)+β ·Sσj (g

i)+γ)

∏
i∈[kn]

(f(i)+β · i+γ) =
∏

i∈[kn]
(g(i)+β ·σ(i)+γ)
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By Lemma 5.4.1 this implies g(i) = f(σ(i)) for all i ∈ [kn], which means (g1, . . . , gk) =

σ(f1, . . . ,fk).

The permutation argument can be efficiently implemented using the KZG polynomial

commitment scheme:

1. The prover commits to polynomials f1, . . . ,fk, g1, . . . ,gk using KZG commitments.

2. The verifier sends random challenges β,γ ∈ Fq.

3. The prover computes the polynomials f ′j and g′j for each j ∈ [k], as well as their

products f ′ and g′. The prover computes Z and quotient polynomials q1, q2 such

that:

L1(X)(Z(X)−1) = vH(X)q1(X)

Z(X)f ′(X)−g′(X)Z(Xg) = vH(X)q2(X)

The prover commits to Z, q1, and q2 using KZG commitments.

4. The verifier samples a random challenge point r ∈ Fq.

5. The prover provides evaluations fj(r), gj(r) for each j ∈ [k], Z(r), Z(r · g), q1(r),

and q2(r).

6. The verifier samples an opening challenge ξ1, ξ2←$Fq to get opening to two evaluation

point r and r ·g.

7. The prover provides KZG opening proofs for all evaluations.

8. The verifier uses the homomorphic properties of KZG commitments to verify

the polynomial identities without directly computing the products f ′(r) and g′(r).

This requires linearization techniques as discussed in Section 3.3, with specific

implementation details shown in the Plonk protocol in Section 6.2.

9. The verifier checks that the KZG opening proofs verify correctly and that the

polynomial identities hold at point r:

L1(r)(Z(r)−1) ?
= vH(r)q1(r)

Z(r)f ′(r)−g′(r)Z(rg)
?
= vH(r)q2(r)

If these checks pass, the verifier is convinced with overwhelming probability that the

permutation relation holds.
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CHAPTER 6

MAIN ZK-SNARKS PROTOCOL

This chapter presents two prominent zk-SNARKs protocols that utilize the KZG

polynomial commitment scheme: Marlin [CHM+20] and Plonk [GWC19]. Both

protocols achieve universal and updatable SRS while taking different approaches to

arithmetization and proof construction.

The exposition for each protocol follows a consistent structure: constraint system

definition, polynomial encoding strategy, optimization through linearization, and finally

the complete non-interactive construction using KZG commitments. This systematic

presentation highlights both the modular nature of zk-SNARKs design and the flexibility

of polynomial commitment schemes as cryptographic building blocks.

Section 6.1 presents the Marlin protocol, followed by Plonk in Section 6.2. A detailed

comparison of their performance characteristics and design trade-offs is provided in

Section 6.3.

6.1 Marlin

Marlin is a zk-SNARKs with universal and updatable SRS. It was introduced by

Chiesa et al. [CHM+20] as an improvement over previous zk-SNARKs protocols,

achieving better prover efficiency, verification time, and proof size. Marlin builds

on the algebraic holographic proof (AHP) for Rank-1 Constraint Satisfiability (R1CS)

[GGPR13] combined with the KZG polynomial commitment scheme from Chapter 3.

The complete Marlin protocol involves multiple rounds of interaction between the prover

and verifier, where polynomial commitments are exchanged and random challenges are

generated to ensure soundness. Figure 6.1 presents the complete protocol flow, showing

the five rounds of communication. Understanding this interactive structure is essential

before seeing how the protocol becomes non-interactive in practice.

Constraint system The R1CS indexed relation is formally defined as the set of all

triples (i,x,w) where i = (Fq,H,K,A,B,C) is the index, Fq is a finite field, H and
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K are subsets of F (typically multiplicative subgroups) of sizes n and m, A,B,C are

H×H matrices over F with |K| ≥max{∥A∥,∥B∥,∥C∥}where ∥M∥ denotes the number

of non-zero entries in matrix M . Define z := (x,w) as a vector in FH , where x := x

corresponds to the instance values and w := w corresponds to the witness values. Here,

FH denotes the set of vectors indexed by elements in H . The triple (i,x,w) satisfies the

relation when z fulfills the constraint Az ◦Bz = Cz, where ◦ denotes the entry-wise

product of vectors. For efficiency, the protocol typically assumes that H and K are

”FFT-friendly” (having smooth sizes), allowing for fast polynomial operations.

Throughout the protocol assumes that H and K come equipped with bijections ϕH : H→
[|H|] and ϕK : K → [|K|] that are computable in linear time. The protocol uses the

structure of the domain H to partition the assignment into instance and witness values.

Define H[≤ k] := {κ ∈ H : 1 ≤ ϕH(κ) ≤ k} and H[> k] := {κ ∈ H : ϕH(κ) > k} to

denote the first k elements in H and the remaining elements, respectively, according to

the ordering induced by ϕH . The instance x is in FH[≤|x|] and the witness w is in FH[>|x|].

Example 6.1.1 (R1CS for polynomial evaluation). Consider proving knowledge of X ∈
F23 such that Y =X3 +2X+5 where Y = 15 is public. The witness is X = 3.

The computation uses intermediate values: w1 = X = 3, w2 = X2 = 9, w3 = X3 = 4,

w4 = 2X = 6. The full assignment vector is z = (x,w) = [1,Y,w1,w2,w3,w4] =

[1,15,3,9,4,6].

The R1CS constraints efficiently express the polynomial evaluation:

1. w1 ·w1 = w2 (computing X2)

2. w2 ·w1 = w3 (computing X3)

3. 2 ·w1 = w4 (computing 2X)

4. (5+w3 +w4) ·1 = Y (final addition)

The constraint matrices are:

A=


0 0 1 0 0 0

0 0 0 1 0 0

2 0 0 0 0 0

5 0 0 0 1 1

 , B =


0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

 , C =


0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0


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Each row corresponds to one constraint, satisfying (Az)i · (Bz)i = (Cz)i. For instance,

constraint 4: (Az)4 = 5+4+6 = 15 and (Bz)4 = 1, giving 15 ·1 = 15 = (Cz)4.

Note that these matrices have dimensions 4× 6 (4 constraints, 6 variables), not square

as in the general protocol description. In practice, the protocol pads such matrices with

zero rows to form square |H|× |H| matrices, where |H| ≥ max{4,6}, enabling uniform

polynomial encoding over the domain H .

Polynomial encoding Marlin represents the R1CS constraint system as a set of

polynomial relations. For efficient encoding, matrices are represented in their sparse form.

The indexer processes these matrices as follows: For each matrix M ∈ {A,B,C}, three

univariate polynomials ˆrowM , ˆcolM , and ˆvalM of degree less than |K| are constructed

such that ˆrowM (κ) gives the row index of the κ-th non-zero entry, ˆcolM (κ) gives the

column index of the κ-th non-zero entry, and ˆvalM (κ) gives the value of the κ-th non-zero

entry. These polynomials allow efficient representation of the sparse matrices.

To understand the matrix representation, it’s essential to first introduce the bivariate

polynomial uH(X,Y ) defined as:

uH(X,Y ) :=
vH(X)−vH(Y )

X−Y

where vH(X) is the vanishing polynomial of the subgroup H . This polynomial uH(X,Y )

has individual degree |H| − 1 and has the useful property that it vanishes on the square

H ×H except on the diagonal, where it takes non-zero values (uH(a,a))a∈H . For

multiplicative subgroups, uH(X,Y ) = Xn−Y n

X−Y and uH(X,X) = nXn−1.

Using these bivariate polynomials, the low-degree extension of matrix M can be

expressed in two equivalent ways. First, as:

M̂(X,Y ) =
∑
κ∈K

uH(X, ˆrowM (κ))uH(Y, ˆcolM (κ)) ˆvalM (κ)
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And this can be equivalently rewritten as:

M̂(X,Y ) =
∑
κ∈K

vH(X)

(X− ˆrowM (κ))
· vH(Y )

(Y − ˆcolM (κ))
· ˆvalM (κ)

where the equivalence follows because vH( ˆrowM (κ)) = vH( ˆcolM (κ)) = 0 since

ˆrowM (X) and ˆcolM (X) map K to H , and vH vanishes on H .

The functions that define these polynomials are constructed as follows: For every κ ∈K

with 1 ≤ ϕK(κ) ≤ ∥M∥, row(κ) gives the row index of the ϕK(κ)-th nonzero entry

in M , col(κ) gives the column index, and val(κ) is the value of this entry divided

by uH(row(κ), row(κ))uH(col(κ),col(κ)). By construction, the polynomial M̂(X,Y )

agrees with the matrix M everywhere on the domain H×H and is the unique low-degree

extension of M with individual degree less than |H|.

The prover begins by encoding the full assignment z := (x,w) as a polynomial. Let

x̂(X) be the polynomial of degree less than |x| that agrees with the instance x in the

domain H[≤ |x|]. The prover computes a ”shifted witness” w for H[> |x|] according to

w(γ) := w(γ)−x̂(γ)
vH[≤|x|](γ)

, where vH[≤|x|](X) is the vanishing polynomial of the subset H[≤ |x|]

and ∀γ ∈ H[> |x|]. The prover then selects a random polynomial ŵ(X) ∈ F<|w|+b
q [X]

that agrees with w on H[> |x|], where b is a parameter for zero-knowledge. The full

assignment polynomial is constructed as ẑ(X) := ŵ(X)vH[≤|x||](X)+ x̂(X).

The prover computes the three linear combinations zA := Az, zB := Bz, and zC := Cz.

The prover then creates random polynomials ẑA(X), ẑB(X), ẑC(X) ∈ F<|H|+b
q [X] that

agree with zA, zB , and zC on H , respectively.

Polynomial identity testing The Marlin protocol aims to prove the existence of a

witness w such that the R1CS relation is satisfied. This is done by encoding the

assignment and constraint matrices as polynomials, and proving two key conditions:

1. Entry-wise product condition: ∀κ ∈H,ẑA(κ)ẑB(κ)− ẑC(κ) = 0.

2. Linear relation condition: ∀M ∈ {A,B,C},∀κ ∈H,ẑM (κ) =
∑

ι∈H M̂(κ,ι)ẑ(ι).

To verify the entry-wise product constraint zA ◦ zB = zC , the prover computes a
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polynomial h0(X) such that ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X). This ensures that

the constraint is satisfied on the domain H . The verifier can generate random challenge

β1 and validate

ẑA(β1)ẑB(β1)− ẑC(β1)
?
= h0(β1)vH(β1)

Then, to verify linear relation constraint the prover samples a random s(X) ∈
F<2|H|+b−1
q [X] and computes its sum σ1 :=

∑
κ∈H s(κ). To reduce communication

complexity, the prover can strategically choose s(X) such that σ1 = 0 as the prover

doesn’t need to send the claimed value of σ1. Then, to verify the linear relation constraint

that zA, zB , and zC are indeed the result of applying matrices A, B, and C to the vector

z, the protocol employs a specialized sumcheck protocol based on the techniques from

Section 5.3.

The protocol requires a bivariate polynomial r(X,Y ) with a critical property: when fixing

the second argument to different elements κ ∈ H , the resulting univariate polynomials

(r(X,κ))κ∈H must be linearly independent.

The bivariate polynomial uH(X,Y ) = vH(X)−vH(Y )
X−Y precisely satisfies this requirement.

As noted in the Marlin paper, the univariate polynomials (uH(X,κ))κ∈H are linearly

independent. Therefore, the protocol can sets r(X,Y ) := uH(X,Y ). Defines

rM (X,Y ) =
∑

κ∈H r(X,κ)M̂(κ,Y ) for each matrix M ∈ {A,B,C} and denote t(X) :=∑
M∈{A,B,C} ηMrM (α,X). The verifier sends random challenges α,ηA,ηB,ηC ∈ Fq, and

the prover needs to prove that

q1(X) := s(X)+ r(α,X)

 ∑
M∈{A,B,C}

ηM ẑM (X)

− t(X)ẑ(X)

sums to 0 over the domain H .

Then, with high probability, the following relationships hold for each matrix M . This

probabilistic guarantee forms the foundation of the protocol’s soundness:

Universitas Indonesia



65

∑
κ∈H

r(α,κ)ẑM (κ) =
∑
κ∈H

rM (α,κ)ẑ(κ)

∑
κ∈H

r(α,κ)ẑM (κ) =
∑
κ∈H

∑
ι∈H

r(α,ι)M̂(ι,κ)ẑ(κ)

=⇒ ẑM (κ) =
∑
ι∈H

M̂(κ,ι)ẑ(ι)

This elegant reduction allows the protocol to employ the univariate sumcheck technique

from Section 5.3. Specifically, the prover finds polynomials g1(X) and h1(X) such that

q1(X) = h1(X)vH(X)+Xg1(X). Notice that since σ1 = 0 was chosen earlier, there’s

no constant term in this decomposition. The verifier then generates a random challenge

β1 to verify the equation at X = β1.

The prover needs to help the verifier compute t(β1) :=
∑

M∈{A,B,C} ηMrM (α,β1),

which would otherwise be expensive for the verifier. The Marlin protocol incorporates

an optimization that transforms the matrix representation with ideas following from

[COS20]. For any matrix M ∈ FH×H
q , they define M∗ ∈ FH×H

q as M∗a,b =Mb,a ·uH(b,b).

This transformation allows the key relation rM (X,Y )≡M∗(Y,X) to hold.

Remark 6.1.2 (Matrix transformation optimization). This optimized version of Marlin

performs polynomial encoding on the transformed matrices M∗ rather than the original

matrices M . While the encoding technique from sparse matrix to polynomials ˆrow,
ˆcol, and ˆval remains unchanged, applying it to M∗ instead of M enables more efficient

verification. The preprocessing transformation M 7→M∗ allows the verifier to efficiently

compute matrix-related evaluations through the relationship rM (X,Y )≡M∗(Y,X).2

Then, the prover defines a new unique polynomial of degree less than |K| such that:

∀κ ∈K , q2(κ) :=
∑

M∈{A,B,C}
ηM

vH(β1)vH(α) ˆvalM∗(κ)

(β1− ˆrowM∗(κ))(α− ˆcolM∗(κ))

This polynomial q2 essentially encodes the evaluation of the matrix summation at specific
2The unoptimized version would encode M directly, requiring more additional complexity in the

protocol.
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points. To understand why the sum of q2(κ) over K equals t(β1), let’s expand the

expression step by step:

∑
κ∈K

q2(κ) =
∑
κ∈K

∑
M∈{A,B,C}

ηM
vH(β1)vH(α) ˆvalM∗(κ)

(β1− ˆrowM∗(κ))(α− ˆcolM∗(κ))

=
∑

M∈{A,B,C}
ηM
∑
κ∈K

vH(β1)vH(α) ˆvalM∗(κ)

(β1− ˆrowM∗(κ))(α− ˆcolM∗(κ))

=
∑

M∈{A,B,C}
ηMM∗(β1,α)

=
∑

M∈{A,B,C}
ηMrM (α,β1)

= t(β1)

The prover computes polynomials g2(X) and h2(X) such that:

q2(X) =Xg2(X)+σ2/|K| and a(X)− b(X)q2(X) = h2(X)vK(X)

Where the polynomials a(X) and b(X) are defined as:

a(X) :=
∑

M∈{A,B,C}

ηMvH(β1)vH(α) ˆvalM∗(X)
∏

N∈{A,B,C}\{M}

(β1− ˆrowN∗(X))(α− ˆcolN∗(X))

b(X) :=
∏

M∈{A,B,C}

(β1− ˆrowM∗(X))(α− ˆcolM∗(X))

The first equation demonstrates that f2 sums to σ2 over K by Theorem 5.3.2, and the

second equation demonstrates that f2 agrees with the correct evaluations over K. These

two equations can be combined into a single equation involving only g2(X) and h2(X):

a(X)− b(X)(Xg2(X)+σ2/|K|) = h2(X)vK(X)

The prover sends just the polynomials g2(X) and h2(X). To check this identity, the
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verifier samples a random element β2 ∈ Fq and verifies the equation at X = β2.

Through this sophisticated multilevel approach, the protocol efficiently validates the

complex relationship between the matrices and witness values:

h2(β2)vK(β2)
?
= a(β2)− b(β2)(β2g2(β2)+ t(β1)/|K|)

This check verifies that f2(X) sums to t(β1) over K, which in turn confirms that t(β1) =∑
M∈{A,B,C} ηMrM (α,β1). Once this crucial value has been verified, the protocol can

complete the verification of the first sumcheck. This layered approach elegantly reduces

the complexity of verifying matrix operations into manageable polynomial checks:

s(β1)+ r(α,β1)

 ∑
M∈{A,B,C}

ηM ẑM (β1)

− t(β1)ẑ(β1)

?
= h1(β1)vH(β1)+β1g1(β1)

This chain of verifications ensures that the linear relation constraint holds, confirming that

zA, zB , and zC are indeed the result of applying matrices A, B, and C to the vector z.

Construction with KZG commitments To transform the interactive polynomial

protocol into a non-interactive zk-SNARKs, the construction integrates the KZG

polynomial commitment scheme from Chapter 3. This integration is crucial because it

allows the prover to commit to polynomials without revealing them, while still enabling

the verifier to check polynomial relationships efficiently.

The generator G(1λ,D) creates a universal SRS that contains KZG commitment

parameters (ck, rk). The commitment key ck = (bp,{xiG1}Di=0) and verification key

rk = (bp,xG2) support polynomials of degree at most D, where D = 6|K|−6 is chosen

to be at least as large as the maximum degree of any polynomial in the protocol.
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The indexer I(srs, i) takes the R1CS index i = (Fq,H,K,A,B,C) and processes

the matrices into polynomial form. For each matrix M ∈ {A,B,C}, it computes

the polynomials ˆrowM∗ , ˆcolM∗ , and ˆvalM∗ and creates KZG commitments to these

polynomials. The index keys are defined as:

ipk=
(
ck, i, [ ˆrowM∗ , ˆcolM∗ , ˆvalM∗ ]M∈{A,B,C}, [c ˆrowM∗ , c ˆcolM∗

, c ˆvalM∗
]M∈{A,B,C}

)
ivk=

(
rk, [c ˆrowM∗ , c ˆcolM∗

, c ˆvalM∗
]M∈{A,B,C}

)

The protocol becomes non-interactive using the Fiat-Shamir transform, where verifier

challenges are replaced with hash evaluations of the transcript. The prover execution

follows the rounds shown in Figure 6.1: encoding the witness, computing derived

polynomials, generating quotient polynomials for constraint verification, and producing

evaluation proofs.

Linearization and optimization To optimize verification and reduce the

communication complexity, Marlin employs linearization polynomials. This technique

cleverly reduces the number of field elements in the proof by combining multiple

polynomial evaluations into a single linearized polynomial. Without linearization, the

prover would need to send individual evaluations of many polynomials at the challenge

points. With linearization, several of these evaluations can be ”absorbed” into the

polynomial structure itself, significantly reducing the proof size.

The following linearization strategy, while not explicitly detailed in [CHM+20], achieves

the stated proof size of 8 field elements in Fq and 13 group elements in G1. The

highlighted text in the following equations denotes the evaluation parts that need to be

transmitted as separate field elements:

f1(X) = ẑA(β1) · ẑB(X) − ẑC(X) − h0(X) · vH(β1) verifies the entry-wise product

constraint.

f2(X) = s(X) + r(α,β1) · (ηA · ẑA(β1) + ηB · ẑB(X) + ηC · ẑC(X))− t(β1) · ẑ(X)−
h1(X) ·vH(β1)−β1 ·g1(X) verifies the first sumcheck relation.
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f3(X) = h2(X) · vK(β2)− a(X) + b(β2) · (β2 · g2(X) + t(β1)/|K|) verifies the second

sumcheck, where

a(X) :=
∑

M∈{A,B,C}

ηMvH(β1)vH(α) ˆvalM∗(X)
∏

N∈{A,B,C}\{M}

(β1− ˆrowN∗(β2))(α− ˆcolN∗(β2))

The key insight is that the prover only needs to send ẑA(β1), t(β1), b(β2), and the six

evaluations { ˆrowM∗(β2), ˆcolM∗(β2)}M∈{A,B,C} as field elements. All other polynomial

evaluations such as vH(β1), vK(β2), and r(α,β1) can be computed efficiently by the

verifier using properties of vanishing polynomials and the bivariate polynomial structure.

The verifier can compute the commitments to these linearization polynomials

homomorphically using the KZG commitment properties:

cf1 = ẑA(β1) · cẑB − cẑC −vH(β1) · ch0

cf2 = cs+ r(α,β1) · (ηA · ẑA(β1) ·G1 +ηB · cẑB +ηC · cẑC )

− t(β1) · cẑ−vH(β1) · ch1−β1 · cg1

cf3 = vK(β2) · ch2− ca+ b(β2) · (β2 · cg2 +
t(β1)

|K|
·G1)

where ca is computed using the homomorphic properties and the provided evaluations

ˆrowM∗(β2) and ˆcolM∗(β2).

By checking f1(β1) = 0, f2(β1) = 0, and f3(β2) = 0, the verifier ensures the validity

of all constraints with high probability. The efficiency of this approach comes from the

verifier only needing evaluations at β1 for ẑA and t, and at β2 for ˆrowM∗ and ˆcolM∗

where M ∈ {A,B,C}, rather than requiring the full polynomials. This linearization

strategy transforms verification of complex multilayer sumcheck relations into efficient

polynomial commitment verification, achieving both succinctness and practical efficiency.

Summary The complete Marlin protocol achieves a proof size of 8 field elements

and 13 group elements in G1. The field elements consist of: ẑA(β1), t(β1), and

the six evaluations { ˆrowM∗(β2), ˆcolM∗(β2)}M∈{A,B,C}. The group elements are the
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commitments: cŵ, cẑA , cẑB , cẑC , ch0 , cs, ct, cg1 , ch1 , cg2 , ch2 , and the two opening proofs

π1, π2. The prover performs 11 variable-base multi-scalar multiplications of size m plus

O(m logm) field operations. The verifier requires only 2 pairings and O(|x|+ logm) field

operations, achieving the desired succinctness property where verification time is nearly

independent of circuit complexity.
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MarlinP1(ipk,x,w) 7→ [cŵ, cẑA , cẑB , cẑC , ch0 , cs] :

encode ŵ, ẑA, ẑB , ẑC

compute h0,s

[cŵ,cẑA ,cẑB ,cẑC ,ch0 ,cs]← PC.Commit(ck, [ŵ, ẑA, ẑB , ẑC ,h0,s])

send [cŵ,cẑA ,cẑB ,cẑC ,ch0 ,cs]

MarlinV1(ivk,x, cŵ, cẑA , cẑB , cẑC , ch0 , cs) 7→ (α,ηA,ηB,ηC) :

send α←$ Fq \H

send ηA,ηB ,ηC ←$ Fq

MarlinP2(α,ηA,ηB,ηC) 7→ (ct, cg1 , ch1) :

compute t,g1,h1

[ct,cg1 ,ch1 ]← PC.Commit(ck, [t,g1,h1])

send (ct,cg1 ,ch1 )

MarlinV2(ct, cg1 , ch1) 7→ β1 :

send β1←$ Fq \H

MarlinP3(β1) 7→ (cg2 , ch2) :

compute g2,h2

[cg2 ,ch2 ]← PC.Commit(ck, [g2,h2])

send (cg2 ,ch2 )

MarlinV3(cg2 , ch2) 7→ β2 :

send β2←$ Fq

MarlinP4(β2) 7→ (v1,v2) :

p1,p2← [ẑA, t], [polyM∗ ]poly∈{ ˆrow, ˆcol},M∗∈{A∗,B∗,C∗}

v1,v2← p1(β1),p2(β2)

send (v1,v2)

MarlinV4(v1,v2) 7→ (ξ1, ξ2) :

send ξ1,ξ2←$ Fq

MarlinP5(ξ1, ξ2) 7→ (π1,π2) :

compute f1,f2,f3

p1,p2← [f1,f2]+p1, [f3]+p2

π1,π2← PC.Open(ck,p1,β1,ξ1),PC.Open(ck,p2,β2,ξ2)

send (π1,π2)

MarlinV5(π1,π2) 7→ 0/1 :

compute cf1 ,cf2 ,cf3

c1,c2← [cf1 ,cf2 ,cẑA ,ct], [cf3 ]+ [cpolyM∗ ]poly∈{ ˆrow, ˆcol},M∗∈{A∗,B∗,C∗}

v1,v2← [0,0]+v1, [0]+v2

return PC.BatchCheck(rk, [ci]
2
i=1, [βi]

2
i=1, [vi]

2
i=1, [πi]

2
i=1, [ξi]

2
i=1])

Figure 6.1: Marlin protocol
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6.2 Plonk

Plonk is a universal zk-SNARKs construction with fully succinct verification introduced

by Gabizon, Williamson, and Ciobotaru [GWC19]. Building on ideas from Sonic

[MBKM19], Plonk achieves significant efficiency improvements through a fundamentally

different approach to polynomial representation. Instead of working with polynomial

coefficients as in previous protocols, Plonk focuses on polynomial evaluations over

a multiplicative subgroup. This design choice enables a more direct arithmetization

where circuit gates are represented through evaluations at specific roots of unity,

eliminating intermediate polynomial manipulations. Furthermore, the multiplicative

subgroup structure naturally aligns with the permutation argument for checking wire

constraints, resulting in a simpler and more efficient protocol overall. These optimizations

make Plonk particularly attractive for practical implementations while maintaining the

same universal and updatable SRS properties.

The Plonk protocol proceeds through a carefully orchestrated sequence of commitments

and challenges that build up a complete proof of circuit satisfiability. Figure 6.2 illustrates

the complete protocol flow, showing how the prover and verifier exchange information

across five rounds. In the first round, the prover commits to the wire polynomials encoding

the circuit’s execution. The second round introduces the permutation polynomial after

receiving randomness for the copy constraint check. The third round commits to the

quotient polynomial that combines all constraints. The fourth round provides polynomial

evaluations at a random point, and the final round delivers the opening proofs. Each

round’s challenges depend on previous commitments, creating a sound protocol where

cheating would require predicting the verifier’s randomness. This interactive structure

provides the foundation for understanding how Plonk achieves both efficiency and

security before it becomes non-interactive through the Fiat-Shamir transform.

Constraint system The Plonk indexed relation is formally defined as the set of all

triples (i,x,w) where i = (Fq,H,m,n,V ,Q) is the index. Here Fq is a finite field,

H = ⟨g⟩ is a multiplicative subgroup of Fq of size n where g is a primitive n-th root of

unity where n is also the number of gates, m is the number of wires, V = (a,b,c) where

a,b,c ∈ [m]n represent the left input, right input, and output wire indices for each gate,

andQ= (qL,qR,qO,qM ,qC)∈ (Fn
q )

5 are selector vectors determining the functionality
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of each gate.

For a triple (i,x,w), let z := (x,w) be the combined assignment in Fm
q , where x denotes

the public input values and w denotes the witness values. The protocol design assumes

without loss of generality that the public inputs correspond to the first ℓ wires, meaning

that x∈ Fℓ
q and w ∈ Fm−ℓ

q . This organization simplifies the handling of public and private

values in the circuit. The relation is satisfied if the following two conditions hold:

1. For each i ∈ [n], the gate constraint is satisfied:

(qL)i · zai +(qR)i · zbi +(qO)i · zci +(qM )i · (zai · zbi)+(qC)i = 0

2. The copy constraints are satisfied. The wiring pattern defines a permutation σ : [3n]→
[3n] where σ groups positions that reference the same wire. For a valid assignment

z ∈ Fm
q , if we define the value vector v ∈ F3n

q as:

vi = zai for i ∈ [n]

vn+i = zbi for i ∈ [n]

v2n+i = zci for i ∈ [n]

Then the copy constraint requires that vi = vσ(i) for all i ∈ [3n].

The second constraint captures the circuit’s wiring pattern. In a circuit, the same wire

often connects multiple gates. For example, one gate’s output might feed into several other

gates inputs. Let [a;b;c] ∈ [m]3n denote the concatenation of wire indices. Whenever

positions in [a;b;c] contain the same wire index, the actual wire values at those positions

must be equal.

To illustrate this concretely: suppose gate 1 outputs to wire 5 (so c1 = 5), gate 3’s left

input reads from wire 5 (so a3 = 5), and gate 7’s right input also reads from wire 5 (so

b7 = 5). This means positions 2n+1, 3, and n+7 in the concatenated vector [a;b;c] all

contain the value 5. The permutation σ creates a cycle connecting these three positions,

enforcing that z5 (the value on wire 5) must be consistent across all three uses.

Each gate in Plonk can function as an addition gate, multiplication gate, or a combination

of both by setting different selectors to appropriate values. For example, setting (qL)i =
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(qR)i = 1, (qO)i = −1, and (qM )i = 0 creates an addition gate, while setting (qL)i =

(qR)i = 0, (qO)i =−1, and (qM )i = 1 creates a multiplication gate. Plonk also provides

a direct mechanism for enforcing constant constraints: to enforce that wire j equals a

constant a ∈ Fq, set for gate i: ai = j, (qL)i = 1, (qM )i = (qR)i = (qO)i = 0, and

(qC)i =−a, giving the constraint 1 · zj +0+0+0−a= 0 which forces zj = a.

Example 6.2.1 (Plonk circuit for polynomial evaluation). Consider the same problem:

proving knowledge of X ∈ F23 such that Y =X3 +2X+5 where Y = 15 is public and

X = 3 is the witness.

The circuit uses 9 wires with 1-indexed assignment z = [1,2,5,15,3,9,4,6,10] where:

• Wires 1-4: public inputs [1,2,5,Y ]

• Wires 5-9: witness values [X,X2,X3,2X,X3 +2X]

The 9 gates enforce the computation:

1. 1 · z1 +0 ·0+0 ·0+0 · (z1 ·0)−1 = 0 (enforce wire 1 = 1)

2. 1 · z2 +0 ·0+0 ·0+0 · (z2 ·0)−2 = 0 (enforce wire 2 = 2)

3. 1 · z3 +0 ·0+0 ·0+0 · (z3 ·0)−5 = 0 (enforce wire 3 = 5)

4. 1 · z4 +0 ·0+0 ·0+0 · (z4 ·0)−15 = 0 (enforce wire 4 = Y)

5. 0 · z5 +0 · z5−1 · z6 +1 · (z5 · z5)+0 = 0 (compute X2)

6. 0 · z6 +0 · z5−1 · z7 +1 · (z6 · z5)+0 = 0 (compute X3)

7. 0 · z5 +0 · z2−1 · z8 +1 · (z5 · z2)+0 = 0 (compute 2X)

8. 1 · z7 +1 · z8−1 · z9 +0 · (z7 · z8)+0 = 0 (compute X3 +2X)

9. 1 · z9 +1 · z3−1 · z4 +0 · (z9 · z3)+0 = 0 (compute final sum)
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The selector vectors and wire indices are:

qL =



1

1

1

1

0

0

0

1

1



, qR =



0

0

0

0

0

0

0

1

1



, qO =



0

0

0

0

−1

−1

−1

−1

−1



, qM =



0

0

0

0

1

1

1

0

0



, qC =



−1

−2

−5

−15

0

0

0

0

0



a=



1

2

3

4

5

6

5

7

9



, b=



0

0

0

0

5

5

2

8

3



, c=



0

0

0

0

6

7

8

9

4


The copy constraint permutation σ : [27]→ [27] on the concatenated vector [a;b;c] creates

cycles:

• (10,11,12,13,19,20,21,22): non-active wires (value 0)

• (2,16): wire 2 appears at positions 2 and 16

• (3,18): wire 3 appears at positions 3 and 18

• (4,27): wire 4 appears at positions 4 and 27

• (5,7,14,15): wire 5 appears at positions 5, 7, 14, and 15

• (6,23): wire 6 appears at positions 6 and 23

• (8,24): wire 7 appears at positions 8 and 24

• (17,25): wire 8 appears at positions 17 and 25

• (9,26): wire 9 appears at positions 9 and 26
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This permutation ensures consistent values across wire reuses.

Polynomial encoding Plonk encodes the circuit and its witness as polynomials

evaluated over the multiplicative subgroup H = ⟨g⟩. The prover constructs three wire

polynomials a(X), b(X), c(X) ∈ F<|H|+b
q [X] such that for each i ∈ [n]:

a(gi) = zai , b(gi) = zbi , c(gi) = zci

The selector polynomials qL, qR, qO, qM , qC ∈ F<|H|+b
q [X] are fixed for a specific circuit

and define the function of each gate. These polynomials are determined during the

preprocessing phase and satisfy for each i ∈ [n]:

qL(g
i) = (qL)i, qR(g

i) = (qR)i, qO(g
i) = (qO)i, qM (gi) = (qM )i, qC(g

i) = (qC)i

For the public input, Plonk uses a special encoding. The protocol assumes the circuit is

”prepared” for ℓ public inputs, meaning that for each i ∈ [ℓ]:

ai = i, (qL)i = 1, (qM )i = (qR)i = (qO)i = (qC)i = 0

The public input polynomial is then defined as:

PI(X) =
∑
i∈[ℓ]
−xi ·Li(X)

The encoding of the permutation σ requires mapping the abstract permutation on indices

[3n] to concrete field elements that can be interpolated into polynomials. This encoding

process involves several steps that connect the circuit’s wiring pattern to evaluable

polynomials.

First, three disjoint cosets of the multiplicative subgroup H are constructed. Let k1,k2 ∈
Fq be chosen such that the sets H , k1 ·H , and k2 ·H are pairwise disjoint. For example,

when g is a quadratic residue in Fq, k1 can be chosen as any quadratic non-residue, and

k2 as a quadratic non-residue not contained in k1 ·H . This gives the extended domain
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H ′ :=H ∪ (k1 ·H)∪ (k2 ·H) containing 3n distinct elements.

Next, a bijection between the abstract index set [3n] and the concrete field elements in H ′

is established. This mapping connects positions in the concatenated wire vector [a;b;c]

to specific field elements:

i 7→ gi for i ∈ [n] (left wire positions)

n+ i 7→ k1 ·gi for i ∈ [n] (right wire positions)

2n+ i 7→ k2 ·gi for i ∈ [n] (output wire positions)

The abstract permutation σ : [3n]→ [3n] is then lifted to a mapping σ∗ : [3n]→ H ′ by

composing σ with the bijection above. For any j ∈ [3n], σ∗(j) gives the field element in

H ′ corresponding to the position that j maps to under the permutation.

Finally, the three permutation polynomials are defined using Lagrange interpolation over

the subgroup H:

Sσ1(X) :=
n∑

i=1

σ∗(i)Li(X)

Sσ2(X) :=
n∑

i=1

σ∗(n+ i)Li(X)

Sσ3(X) :=
n∑

i=1

σ∗(2n+ i)Li(X)

These polynomials encode where each wire position maps under the permutation: Sσ1(g
i)

gives the field element that position i (in the left wire segment) maps to, and similarly for

Sσ2 and Sσ3 .

For efficiency, the identity permutation polynomials are represented directly as degree-1

polynomials: SID1(X) = X , SID2(X) = k1X , and SID3(X) = k2X . Since these

are low-degree polynomials, their evaluations can be computed directly by the verifier

without requiring the prover to send them, saving communication cost.
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Polynomial identity testing The Plonk protocol verifies the constraint system by

combining all constraints into a single quotient polynomial. The prover must prove two

key conditions:

1. Gate constraints: For all gi ∈H:

qL(g
i)·a(gi)+qR(g

i)·b(gi)+qO(g
i)·c(gi)+qM (gi)·a(gi)·b(gi)+qC(g

i)+PI(gi)= 0

2. Permutation constraint: (a,b,c) = σ(a,b,c), verified through the conditions from

Theorem 5.4.2 For all gi ∈H:

L1(g
i)(Z(gi)−1) = 0

Z(gi)f ′(gi)−g′(X)Z(gi+1) = 0

where f ′(X) and g′(X) are the polynomials from the permutation argument:

f ′(X) = (a(X)+βX+γ)(b(X)+βk1X+γ)(c(X)+βk2X+γ)

g′(X) = (a(X)+βSσ1(X)+γ)(b(X)+βSσ2(X)+γ)(c(X)+βSσ3(X)+γ)

These constraints are combined using a random challenge α ∈ Fq. The prover constructs

a quotient polynomial t(X) that encodes all constraints:

t(X) =
1

vH(X)

[
qL(X)a(X)+ qR(X)b(X)+ qO(X)c(X)+ qM (X)a(X)b(X)+ qC(X)+PI(X)

+α
(
Z(X)f ′(X)−g′(X)Z(Xg)

)
+α2L1(X)(Z(X)−1)

]

The polynomial t(X) is well-defined (has no remainder when dividing by vH(X)) if

and only if all constraints are satisfied on H . Since t(X) can have degree up to

3n+ 5 (accounting for blinding factors), the prover splits it into three polynomials
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t′lo(X), t′mid(X), t′hi(X) of degree at most n+5 such that:

t(X) = t′lo(X)+Xn · t′mid(X)+X2n · t′hi(X)

To achieve zero-knowledge, the prover adds blinding factors by choosing random scalars

b10, b11 ∈ Fq and defines:

tlo(X) = t′lo(X)+ b10X
n

tmid(X) = t′mid(X)− b10 + b11X
n

thi(X) = t′hi(X)− b11

Note that the blinding cancels out when reconstructing t(X) = tlo(X)+Xntmid(X)+

X2nthi(X), maintaining the original polynomial while hiding information about

individual components.

The verifier generates a random challenge ζ ∈ Fq and checks that the polynomial identity

holds at this point. Specifically, the verifier checks:

qL(ζ)a(ζ)+ qR(ζ)b(ζ)+ qO(ζ)c(ζ)+ qM (ζ)a(ζ)b(ζ)+ qC(ζ)+PI(ζ)

+α
(
Z(ζ)f ′(ζ)−g′(ζ)Z(ζg)

)
+α2L1(ζ)(Z(ζ)−1)
?
=
(
tlo(ζ)+ ζntmid(ζ)+ ζ2nthi(ζ)

)
·vH(ζ)

where:

f ′(ζ) = (a(ζ)+βζ+γ)(b(ζ)+βk1ζ+γ)(c(ζ)+βk2ζ+γ)

g′(ζ) = (a(ζ)+βSσ1(ζ)+γ)(b(ζ)+βSσ2(ζ)+γ)(c(ζ)+βSσ3(ζ)+γ)

By Lemma 2.3.8, if this identity holds at ζ with high probability over the random choice,

then with overwhelming probability all constraints are satisfied on H .
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Construction with KZG commitments To transform the interactive polynomial

protocol into a non-interactive zk-SNARKs, Plonk integrates the KZG polynomial

commitment scheme with the constraint system and permutation argument. This

integration achieves a preprocessing zk-SNARKs with universal and updatable SRS,

making it highly practical for real-world applications.

The generator G(1λ,D) creates a universal SRS containing KZG commitment parameters

(ck, rk). The commitment key ck = (bp,{xiG1}Di=0) and verification key rk = (bp,xG2)

support polynomials of degree at most D, where D = n+ 5 is chosen to accommodate

the highest-degree polynomial in the protocol (accounting for blinding factors).

The indexer I(srs, i) takes the Plonk index i = (Fq,H,m,n,V ,Q) and preprocesses

the circuit-specific polynomials. It first constructs the selector polynomials

qL, qR, qO, qM , qC ∈ F<n
q [X] from the selector vectors by interpolation over H . Then

it constructs the permutation polynomials Sσ1 ,Sσ2 ,Sσ3 ∈ F<n
q [X] that encode the copy

constraints. The indexer creates KZG commitments to all these polynomials. The index

keys are:

ipk=
(
ck, i, [qL, qR, qO, qM , qC ,Sσ1 ,Sσ2 ,Sσ3], [cqL , cqR , cqO , cqM , cqC , cSσ1

, cSσ2
, cSσ3

]
)

ivk=
(
rk, [cqL , cqR , cqO , cqM , cqC , cSσ1

, cSσ2
, cSσ3

]
)

The protocol becomes non-interactive through the Fiat-Shamir transform, where verifier

challenges are replaced with hash evaluations of the transcript. The prover execution

follows the rounds shown in Figure 6.2: encoding the witness as wire polynomials,

constructing the permutation polynomial, building the quotient polynomial that combines

all constraints, and producing evaluation proofs.

Linearization and optimization To optimize verification, Plonk uses linearization to

reduce the number of polynomial evaluations the prover needs to send. This technique

cleverly reduces the communication complexity by combining multiple polynomial

evaluations into a single linearized polynomial, similar to the approach used in Marlin
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but adapted for Plonk’s constraint structure.

After the verifier chooses a random evaluation point ζ ∈ Fq, the prover constructs

linearization polynomials that absorb most evaluations into the polynomial structure itself.

The highlighted text in the following equations denotes the evaluation parts that would

otherwise need to be transmitted as separate field elements:

The linearization polynomial r(X) combines all constraint checks:

r(X) = a(ζ)b(ζ) · qM (X)+a(ζ) · qL(X)+ b(ζ) · qR(X)+ c(ζ) · qO(X)+PI(ζ)+ qC(X)

+α [(a(ζ)+βζ+γ)(b(ζ)+βk1ζ+γ)(c(ζ)+βk2ζ+γ) · z(X)

−(a(ζ)+βSσ1(ζ)+γ)(b(ζ)+βSσ2(ζ)+γ)(c(ζ)+β ·Sσ3(X)+γ)z(ζg)]

+α2 [(z(X)−1)L1(ζ)]

−vH(ζ) ·
(
tlo(X)+ ζntmid(X)+ ζ2nthi(X)

)

The key insight is that most polynomial evaluations can be absorbed into the linearization

polynomial itself rather than being sent as separate field elements. The prover only needs

to send the evaluations a(ζ), b(ζ), c(ζ), Sσ1(ζ), Sσ2(ζ), and z(ζg) as field elements.

All other evaluations such as qL(ζ), qR(ζ), qO(ζ), qM (ζ), qC(ζ), L1(ζ), vH(ζ), PI(ζ),

and Sσ3(ζ) are computed by the verifier from the preprocessed polynomial commitments

or direct calculation, since these are either circuit-dependent polynomials known during

preprocessing or efficiently computable values.

The verifier can compute the commitment to r(X) homomorphically using the KZG

commitment properties:

cr = a(ζ)b(ζ) · cqM +a(ζ) · cqL + b(ζ) · cqR + c(ζ) · cqO +PI(ζ) ·G1 + cqC

+α [(a(ζ)+βζ+γ)(b(ζ)+βk1ζ+γ)(c(ζ)+βk2ζ+γ) · cz

−(a(ζ)+βSσ1(ζ)+γ)(b(ζ)+βSσ2(ζ)+γ) ·
(
βz(ζg) · cSσ3

+(c(ζ)+γ)z(ζg) ·G1

)]
+α2L1(ζ) · cz−vH(ζ) ·

(
ctlo + ζnctmid + ζ2ncthi

)

The linearization technique enables batch verification of all polynomial relations through

a single KZG opening proof that verifies r(ζ) = 0. This approach reduces the proof from
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potentially dozens of field elements to just 6 field elements while maintaining the security

guarantees of the protocol.

Summary The complete Plonk protocol achieves a proof size of 6 field elements and

9 group elements in G1. The field elements consist of the evaluations: a(ζ), b(ζ), c(ζ),

Sσ1(ζ), Sσ2(ζ), and z(ζg). The group elements are the commitments: ca, cb, cc, cz,

ctlo , ctmid , cthi , and the two opening proofs π1, π2. The prover performs 7 variable-base

multi-scalar multiplications of size n plus O(n logn) field operations. The verifier

requires only 2 pairings and O(ℓ+ logn) field operations, achieving remarkable efficiency

where verification time depends logarithmically on circuit size and linearly only on the

number of public inputs.
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PlonkP1(ipk,x,w) 7→ (ca, cb, cc) :

encode a,b,c

compute h0,s

[ca,cb,cc]← PC.Commit(ck, [a,b,c])

send (ca,cb,cc)

PlonkV1(ivk,x, ca, cb, cc) 7→ (β,γ) :

send β,γ←$ Fq

PlonkP2(β,γ) 7→ cz :

compute z

[cz ]← PC.Commit(ck, [t,g1,h1])

send cz

PlonkV2(cz) 7→ α :

send α←$ Fq

PlonkP3(α) 7→ (ctlo , ctmid
, cthi) :

compute tlo, tmid, thi

[ctlo ,ctmid
,cthi

]← PC.Commit(ck, [tlo, tmid, thi])

send (ctlo ,ctmid
,cthi

)

PlonkV3(ctlo , ctmid
, cthi) 7→ z :

send z←$ Fq

PlonkP4(β2) 7→ (v1,v2) :

p1,p2← [a,b,c,Sσ1 ,Sσ2 ], [z]

v1,v2← p1(z),p2(zg)

send (v1,v2)

PlonkV4(v1,v2) 7→ (ξ1, ξ2) :

send ξ1,ξ2←$ Fq

PlonkP5(ξ1, ξ2) 7→ (π1,π2) :

compute r

p1← [r]+p1

π1,π2← PC.Open(ck,p1,z,ξ1),PC.Open(ck,p2,zg,ξ2)

send (π1,π2)

PlonkV5(π1,π2) 7→ 0/1 :

compute cr

c1,c2← [cr,ca,cb,cc,cSσ1
,cSσ2

], [cz ]

v1← [0]+v1

return PC.BatchCheck(rk, [ci]
2
i=1, [βi]

2
i=1, [vi]

2
i=1, [πi]

2
i=1, [ξi]

2
i=1])

Figure 6.2: Plonk protocol
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6.3 Comparison of Marlin and Plonk

Both Marlin and Plonk utilize the KZG polynomial commitment scheme but achieve

different performance characteristics through distinct design choices. Table 6.1

summarizes their key metrics.

Table 6.1: Performance comparison of Marlin and Plonk

Metric Marlin Plonk
Constraint system R1CS Custom gates
SRS degree 6m n
Proof size
Field elements (Fq) 8 6
Group elements (G1) 13 9
Prover complexity
v-MSM operations 11 of size m 7 of size n
Field operations O(m logm) O(n logn)
Verifier complexity
Pairings 2 2
Field operations O(ℓ+ logm) O(ℓ+ logn)
Marlin: n = constraints, m = sparse matrix domain. Plonk: n = gates, ℓ = public inputs.

Design trade-offs Marlin’s R1CS representation goods at high fan-in addition gates. A

single constraint can express
∑k

i=1aixi = b regardless of k, while Plonk requires O(k)

gates.

Plonk’s uniform gate structure simplifies arithmetization and enables direct polynomial

encoding. Every gate supports both addition and multiplication, eliminating the need for

complex matrix representations.

Practical considerations Plonk’s 30% smaller proof size (6+9 vs 8+13 elements)

reduces on-chain storage costs in blockchain applications. Its simpler structure typically

yields faster proving times for general-purpose circuits. However, for circuits originally

designed for R1CS assuming ”free” additions, Marlin may perform better.

Both protocols achieve universal and updatable SRS through KZG commitments. The

choice depends primarily on circuit structure: Marlin for addition-heavy computations,

Plonk for balanced arithmetic circuits requiring simplicity and smaller proofs.
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CHAPTER 7

CONCLUSION

This final project has presented a comprehensive exposition of the KZG polynomial

commitment scheme and its fundamental role in zk-SNARKs constructions, specifically

examining its implementation in the Marlin and Plonk protocols. Through systematic

development of mathematical foundations, detailed proofs, extensive examples, and

complete SageMath implementations, this work has aimed to bridge the gap between

abstract cryptographic theory and concrete understanding for undergraduate students.

7.1 Conclusion

The key insights and accomplishments of this educational exposition can be summarized

as follows:

First, this project has demonstrated that the KZG polynomial commitment scheme serves

as a powerful cryptographic primitive that enables the construction of efficient ZKPs. By

building from fundamental algebraic structures through to bilinear pairings, the exposition

shows how mathematical elegance translates into practical cryptographic protocols. The

constant-size commitments and evaluation proofs, regardless of polynomial degree,

make KZG particularly suitable for achieving the succinctness property essential to

zk-SNARKs.

Second, the detailed examination of both Marlin and Plonk reveals how a single

polynomial commitment scheme can enable diverse protocol designs with different

performance characteristics. Marlin’s use of algebraic holographic proofs and its

R1CS arithmetization provides optimal prover efficiency, while Plonk’s custom gates

and permutation arguments offer a more flexible constraint system. This comparison

illustrates the modular nature of modern cryptographic constructions, where foundational

primitives like KZG can be composed in various ways to achieve different design goals.

Third, the extensive numerical examples throughout this work serve to demystify

operations that often remain abstract in research papers. By computing actual polynomial

evaluations over small finite fields, showing explicit pairing calculations, and tracing

through complete protocol executions, these examples transform theoretical concepts into
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tangible computations that students can verify and understand.

Fourth, the SageMath implementations provide a practical bridge between theory

and application. These implementations closely follow the theoretical constructions,

with extensive documentation explaining each step. Students can modify parameters,

experiment with different field sizes, and observe how changes affect performance and

security properties. This hands-on approach reinforces theoretical understanding through

practical experimentation.

Finally, this project has shown that the apparent complexity of zk-SNARKs protocols

stems not from inherently difficult concepts, but from the layering of multiple

mathematical and cryptographic ideas. By carefully unpacking each layer, from

groups and fields through polynomial commitments to complete protocols, this

exposition demonstrates that these sophisticated constructions are accessible to motivated

undergraduate students.

The educational value of this work extends beyond the specific protocols examined. By

understanding how KZG enables Marlin and Plonk, students gain insight into the broader

principles of cryptographic protocol design. They learn how information-theoretic

protocols combine with cryptographic commitments to achieve computational security,

how polynomial encodings transform computational statements into algebraic relations,

and how careful protocol design achieves seemingly contradictory properties like proving

knowledge without revealing information.

7.2 Future Directions

Based on the foundation established in this project, several directions for continued study

and exploration are suggested:

1. Exploring ZKP constructions beyond zk-SNARKs: While this final project focused

on zk-SNARKs using KZG commitments, the ZKPs landscape encompasses diverse

constructions with different trade-offs. According to a comprehensive survey of

ZKP frameworks [SAKK25], four major taxonomies exist: zk-SNARKs, zk-STARKs

(Scalable Transparent Arguments of Knowledge), MPC-in-the-Head (MPCitH), and

VOLE-based ZK (Vector Oblivious Linear Evaluation). Each approach offers distinct

advantages in terms of trusted setup requirements, proof size, post-quantum security,
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and computational efficiency. Understanding these alternative constructions would

provide students with a comprehensive view of the zero-knowledge landscape and the

diverse approaches to achieving privacy-preserving computation.

2. Alternative polynomial commitment schemes: Building on the understanding of

different ZKP constructions, students could explore polynomial commitment schemes

beyond KZG. FRI (Fast Reed-Solomon Interactive Oracle Proofs of Proximity)

[BSBHR18], used in zk-STARKs, achieves transparency and post-quantum security

through error-correcting codes. Bulletproofs [BBB+18] eliminate trusted setup using

inner product arguments, though with logarithmic proof sizes. IPA (Inner Product

Arguments) and other schemes offer different trade-offs between setup requirements,

proof sizes, and verification complexity. Comparing these alternatives would deepen

understanding of how the choice of polynomial commitment scheme fundamentally

shapes the properties of the resulting ZKPs.

3. Implementation optimizations: The SageMath implementations prioritize clarity

over performance and assume constraint systems are provided directly rather than

compiled from higher-level programs. Students could implementing the protocols

in lower-level languages like Rust or C++ and investigating how production

implementations achieve practical performance while maintaining security would

bridge the gap between educational code and real-world systems. Second, developing

a compiler that transforms programs written in a high-level language into the

constraint systems required by Marlin (R1CS) or Plonk (custom gates) would make the

implementations more practical. Such a compiler would handle variable assignment,

constraint generation, and witness computation automatically, bridging the gap

between abstract protocol implementations and usable proof systems. Investigating

how production frameworks like Circom [ide22], Leo [Ale21], or Noir [Azt22] achieve

both efficient compilation and optimized proving would provide valuable insights into

building practical zero-knowledge applications.

4. Applications and use cases: Moving beyond the protocols themselves, students

could implement concrete applications using the zk-SNARKs constructions studied.

Examples include privacy-preserving voting systems, anonymous credentials, or

verifiable computation outsourcing. Building actual applications would reinforce

understanding of how theoretical properties translate into practical privacy and

verifiability guarantees.

Universitas Indonesia



88

5. Security analysis and attacks: While this project presented security proofs in

idealized models, students interested in cryptanalysis could explore potential attacks,

implementation vulnerabilities, or the implications of different security assumptions.

Understanding how side-channel attacks might compromise implementations, or how

the security of KZG relates to progress in solving discrete logarithm problems, would

develop critical security thinking.

The rapidly evolving field of ZKPs offers numerous opportunities for continued learning.

The foundation provided by understanding KZG and its role in Marlin and Plonk equips

students to engage with ongoing research, contribute to open-source implementations,

or apply these techniques in novel contexts. As ZKPs find increasing application

in blockchain systems, privacy-preserving technologies, and verifiable computation,

the knowledge gained from this exposition provides a solid starting point for future

exploration and contribution to this exciting field.
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APPENDIX 1: KZG

1 from sage.all import GF, PolynomialRing

2

3 class KZG:

4

5 def __init__(self, curve_type="bn254"):

6 # Set up the curve operations based on the specified curve type

7 if curve_type == "bn254":

8 from py_ecc.optimized_bn128 import (

9 G1, G2, multiply, add, curve_order, pairing,

10 neg, Z1, Z2, eq

11 )

12 elif curve_type == "bls12_381":

13 from py_ecc.optimized_bls12_381 import (

14 G1, G2, multiply, add, curve_order, pairing,

15 neg, Z1, Z2, eq

16 )

17 else:

18 raise ValueError(f"Unsupported curve type: {curve_type}")

19

20 # Store curve operations

21 self.G1 = G1

22 self.G2 = G2

23 self.Z1 = Z1 # Zero point in G1

24 self.Z2 = Z2 # Zero point in G2

25 self.multiply = multiply

26 self.add = add

27 self.neg = neg

28 self.pairing = pairing

29 self.eq = eq

30 self.curve_order = curve_order

31

32 # Set up the finite field and polynomial ring

33 self.Fq = GF(curve_order)

34 self.R = PolynomialRing(self.Fq, "X")

35 self.X = self.R.gen()

36

37 def setup(self, max_degree):

38 # Sample a random secret tau Fq

39 tau = self.Fq.random_element()

40

41 # Generate commitment key: [G, G, G, ..., G]

42 powers_of_tau_G1 = [self.G1]

43 for i in range(1, max_degree + 1):

44 powers_of_tau_G1.append(self.multiply(self.G1, int(tau**i)))

45

46 # Generate verification key: G

47 tau_G2 = self.multiply(self.G2, int(tau))

48
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49 # Return the key pair

50 return (powers_of_tau_G1, tau_G2)

51

52 def commit(self, ck, polynomials):

53 # Ensure all inputs are SageMath polynomials

54 sage_polynomials = []

55 for poly in polynomials:

56 if isinstance(poly, list):

57 sage_polynomials.append(self.R(poly))

58 else:

59 sage_polynomials.append(poly)

60

61 max_degree = len(ck) - 1

62 commitments = []

63

64 for poly in sage_polynomials:

65 if poly.degree() > max_degree:

66 raise ValueError(

67 f"exceeds maximum allowed degree {max_degree}"

68 )

69

70 # Compute the commitment: p()G = p(G)

71 commitment = self.Z1 # Zero point in G1

72 coeffs = poly.list() # Get coefficients [p, p, ...]

73

74 for i, coeff in enumerate(coeffs):

75 if coeff == 0:

76 continue

77 term = self.multiply(ck[i], int(coeff))

78 commitment = self.add(commitment, term)

79

80 commitments.append(commitment)

81

82 return commitments

83

84 def open(self, ck, polynomials, z, xi):

85 # Ensure all inputs are SageMath polynomials

86 sage_polynomials = []

87 for poly in polynomials:

88 if isinstance(poly, list):

89 sage_polynomials.append(self.R(poly))

90 else:

91 sage_polynomials.append(poly)

92

93 # Convert z and challenge to field elements

94 z = self.Fq(z)

95 xi = self.Fq(xi)

96

97 # Compute the batch polynomial: p(X) = p(X)

98 combined_poly = self.R(0) # Zero polynomial
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99 for i, poly in enumerate(sage_polynomials):

100 combined_poly += xi ** (i + 1) * poly

101

102 # Compute witness polynomial w(X) = (p(X) - p(z))/(X - z)

103 X = self.X

104 witness_poly = (combined_poly - combined_poly(z)) // (X - z)

105

106 # Commit to the witness polynomial

107 proof = self.commit(ck, [witness_poly])[0]

108

109 return proof

110

111 def check(self, rk, commitments, z, evaluations, proof, xi):

112 # Extract the verification key component

113 tau_G2 = rk

114

115 # Convert z and challenge to field elements

116 z = self.Fq(z)

117 xi = self.Fq(xi)

118

119 # Compute the batch commitment: C = C

120 combined_commitment = self.Z1

121 for i, comm in enumerate(commitments):

122 challenge_power = int(xi ** (i + 1))

123 term = self.multiply(comm, challenge_power)

124 combined_commitment = self.add(combined_commitment, term)

125

126 # Compute the batch evaluation: v = v

127 combined_evaluation = self.Fq(0)

128 for i, eval_i in enumerate(evaluations):

129 combined_evaluation += xi ** (i + 1) * self.Fq(eval_i)

130

131 # Convert combined evaluation to integer for curve operations

132 eval_int = int(combined_evaluation)

133 z_int = int(z)

134

135 # Compute C - vG

136 v_G1 = self.multiply(self.G1, eval_int)

137 C_minus_v = self.add(combined_commitment, self.neg(v_G1))

138

139 # Compute G - zG

140 z_G2 = self.multiply(self.G2, z_int)

141 tauG2_minus_z = self.add(tau_G2, self.neg(z_G2))

142

143 # Check the pairing equation: e(C - vG, G) = e(, G - zG)

144 left_pairing = self.pairing(self.G2, C_minus_v)

145 right_pairing = self.pairing(tauG2_minus_z, proof)

146

147 return left_pairing == right_pairing

148
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149 def batch_check(self, rk, commitments_list, z_list, evaluations_list, proof_list, xi_list, r=None):

150 # Extract the verification key component

151 tau_G2 = rk

152

153 # Sample random field element r for batching

154 if r is None:

155 r = self.Fq.random_element()

156

157 # Initialize accumulators for the batched equation

158 left_acc = self.Z1 # Zero point in G1

159 right_acc = self.Z1 # Zero point in G1

160

161 # Process each verification instance

162 for i, (commitments, z, evaluations, proof, xi) in enumerate(

163 zip(commitments_list, z_list, evaluations_list, proof_list, xi_list)

164 ):

165 # Convert z and challenge to field elements

166 z = self.Fq(z)

167 xi = self.Fq(xi)

168

169 # Compute the batch commitment and evaluation

170 combined_commitment = self.Z1

171 combined_evaluation = self.Fq(0)

172

173 for j, comm in enumerate(commitments):

174 xi_power = xi ** (j + 1)

175 combined_commitment = self.add(

176 combined_commitment, self.multiply(comm, int(xi_power))

177 )

178 combined_evaluation += xi_power * self.Fq(evaluations[j])

179

180 # Convert to integers for curve operations

181 eval_int = int(combined_evaluation)

182 z_int = int(z)

183

184 # Transform the verification equation

185 # From: e(C - vG, G) = e(, G - zG)

186 # To: e(C - vG + z, G) = e(, G)

187 v_G1 = self.multiply(self.G1, eval_int)

188 C_minus_v = self.add(combined_commitment, self.neg(v_G1))

189 z_pi = self.multiply(proof, z_int)

190 term_left = self.add(C_minus_v, z_pi)

191

192 # Apply random power rˆi to this verification instance

193 r_power = int(r ** (i + 1)) # Use rˆ(i+1) for security

194 term_left = self.multiply(term_left, r_power)

195 term_right = self.multiply(proof, r_power)

196

197 # Accumulate terms for the batched equation

198 left_acc = self.add(left_acc, term_left)
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199 right_acc = self.add(right_acc, term_right)

200

201 # Check the batched equation:

202 # e((rˆi(C_i - v_iG + z_i_i)), G) = e((rˆi_i), G)

203 left_pairing = self.pairing(self.G2, left_acc)

204 right_pairing = self.pairing(tau_G2, right_acc)

205

206 return left_pairing == right_pairing

Code 1: KZG polynomial commitment scheme

Universitas Indonesia



APPENDIX 2: MARLIN

1 from sage.all import vector, prod, PolynomialRing, GF

2

3 from fft_ff import fft_ff_interpolation

4

5 class Encoder:

6

7 def __init__(self, q):

8 self.Fq = GF(q) # Finite field GF(curve_order)

9 self.R = PolynomialRing(self.Fq, ’X’)

10 self.X = self.R.gen()

11

12 def update_state(self, A, B, C):

13 self.A = A

14 self.B = B

15 self.C = C

16

17 # Calculate appropriate subgroup size for domain H (must be power of 2)

18 self.n = self.find_subgroup_size(max(A.nrows(), A.ncols()))

19

20 # Calculate appropriate subgroup size for domain K (must be power of 2)

21 num_nonzero_A = len(A.nonzero_positions())

22 num_nonzero_B = len(B.nonzero_positions())

23 num_nonzero_C = len(C.nonzero_positions())

24 self.m = self.find_subgroup_size(

25 max(num_nonzero_A, num_nonzero_B, num_nonzero_C)

26 )

27

28 # Generate multiplicative subgroups H and K

29 self.g_H = self.Fq(1).nth_root(self.n)

30 self.g_K = self.Fq(1).nth_root(self.m)

31 self.H = [self.g_H**i for i in range(self.n)]

32 self.K = [self.g_K**i for i in range(self.m)]

33

34 # Compute vanishing polynomials

35 self.v_H = self.X**self.n - 1

36 self.v_K = self.X**self.m - 1

37

38 def find_subgroup_size(self, n):

39 return 2 ** ((n - 1).bit_length())

40

41 def u_H(self, a, b):

42 if a == b:

43 # When a=b, u_H(a,a) is the formal derivative of v_H at a

44 return self.v_H.derivative()(a)

45 else:

46 return (self.v_H(a) - self.v_H(b)) / (a - b)

47

48 def encode_matrices(self):
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49 # Precompute u_H values for efficiency

50 u_H_diag = {h: self.u_H(h, h) for h in self.H}

51

52 # Dictionary to store all encoded polynomials

53 encoded = {}

54

55 # Encode each constraint matrix (A, B, C)

56 for name, M in [("A", self.A), ("B", self.B), ("C", self.C)]:

57 # Get non-zero positions and values

58 nonzero_positions = list(M.nonzero_positions())

59

60 # Prepare arrays for row, column, and values

61 row_values = [self.Fq(0)] * self.m

62 col_values = [self.Fq(0)] * self.m

63 val_values = [self.Fq(0)] * self.m

64

65 # Prepare data for K-interpolation

66 for k, (i, j) in enumerate(nonzero_positions):

67 row_values[k] = self.H[i]

68 col_values[k] = self.H[j]

69 # Adjust value by u_H factors as required by Marlin protocol

70 val_values[k] = self.Fq(M[i, j]) / (

71 u_H_diag[self.H[i]] * u_H_diag[self.H[j]]

72 )

73

74 # Use FFT interpolation to get polynomials

75 row_poly = fft_ff_interpolation(row_values, self.g_K, self.Fq)

76 col_poly = fft_ff_interpolation(col_values, self.g_K, self.Fq)

77 val_poly = fft_ff_interpolation(val_values, self.g_K, self.Fq)

78

79 # Store in dictionary with descriptive keys

80 encoded[f"row_{name}"] = row_poly

81 encoded[f"col_{name}"] = col_poly

82 encoded[f"val_{name}"] = val_poly

83

84 return encoded

85

86 def encode_witness(self, z, x_size):

87 # Convert z to field elements

88 z = [self.Fq(zi) for zi in z]

89

90 # Split z into x (public input) and w (private witness)

91 x, w = z[:x_size], z[x_size:]

92

93 X = self.X

94

95 # Create Lagrange polynomial for x (public input)

96 x_points = [(self.H[i], x[i]) for i in range(len(x))]

97 x_poly = self.R.lagrange_polynomial(x_points)

98
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99 # Calculate vanishing polynomial for x positions

100 v_H_x = prod([X - self.H[i] for i in range(len(x))])

101

102 # Encode w using the optimization approach

103 # First, create values array with zeros for x positions

104 values = [self.Fq(0)] * len(x)

105

106 # Add witness values adjusted by public input polynomial

107 for i, wi in enumerate(w):

108 values.append(wi - x_poly(self.H[i + len(x)]))

109

110 # Pad values to match H size if needed

111 padding_size = self.n - len(values)

112 if padding_size > 0:

113 values.extend([self.Fq(0)] * padding_size)

114

115 # Interpolate to get polynomial f

116 f = fft_ff_interpolation(values, self.g_H, self.Fq)

117

118 # Calculate w_poly = f / v_H_x

119 w_poly = f // v_H_x

120 assert w_poly * v_H_x == f, "w_poly is not well-defined"

121

122 # Reconstruct z_poly = w_poly * v_H_x + x_poly

123 z_poly = w_poly * v_H_x + x_poly

124

125 return {

126 "x_poly": x_poly,

127 "w_poly": w_poly,

128 "z_poly": z_poly,

129 "x": x,

130 "w": w,

131 }

132

133 def encode_linear_combinations(self, z):

134 # Convert z to a vector of field elements

135 z_vector = vector(self.Fq, [self.Fq(zi) for zi in z])

136

137 # Compute the linear combinations

138 zA = self.A * z_vector

139 zB = self.B * z_vector

140 zC = self.C * z_vector

141

142 # Convert to lists

143 zA_list = list(zA)

144 zB_list = list(zB)

145 zC_list = list(zC)

146

147 # Pad lists to match subgroup size

148 if len(zA_list) < self.n:
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149 zA_list.extend([self.Fq(0)] * (self.n - len(zA_list)))

150 if len(zB_list) < self.n:

151 zB_list.extend([self.Fq(0)] * (self.n - len(zB_list)))

152 if len(zC_list) < self.n:

153 zC_list.extend([self.Fq(0)] * (self.n - len(zC_list)))

154

155 # Use FFT interpolation to get polynomials

156 zA_poly = fft_ff_interpolation(zA_list, self.g_H, self.Fq)

157 zB_poly = fft_ff_interpolation(zB_list, self.g_H, self.Fq)

158 zC_poly = fft_ff_interpolation(zC_list, self.g_H, self.Fq)

159

160 return {

161 "zA_poly": zA_poly,

162 "zB_poly": zB_poly,

163 "zC_poly": zC_poly,

164 "zA": zA_list,

165 "zB": zB_list,

166 "zC": zC_list,

167 }

Code 2: Marlin encoder

1 from kzg import KZG

2 from marlin.encoder import Encoder

3

4 class Indexer:

5

6 def __init__(self, curve_type="bn254"):

7 self.kzg = KZG(curve_type=curve_type)

8 self.encoder = Encoder(self.kzg.curve_order)

9

10 def preprocess(self, A, B, C, max_degree):

11 # Setup KZG commitment scheme

12 ck, rk = self.kzg.setup(max_degree)

13

14 # Update encoder state with matrices

15 self.encoder.update_state(A, B, C)

16

17 # Create star matrices for more efficient R1CS representation

18 A_star, B_star, C_star = A.T, B.T, C.T

19 for i in range(A.ncols()):

20 A_star[:, i] *= self.encoder.u_H(self.encoder.H[i], self.encoder.H[i])

21 B_star[:, i] *= self.encoder.u_H(self.encoder.H[i], self.encoder.H[i])

22 C_star[:, i] *= self.encoder.u_H(self.encoder.H[i], self.encoder.H[i])

23

24 self.encoder.update_state(A_star, B_star, C_star)

25

26 # Encode matrices into polynomials

27 encoded_matrices = self.encoder.encode_matrices()

28

29 # Organize indexer polynomials in a dictionary
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30 indexer_polys = {}

31 for matrix in ["A", "B", "C"]:

32 for poly_type in ["row", "col", "val"]:

33 key = f"{poly_type}_{matrix}"

34 indexer_polys[key] = encoded_matrices[key]

35

36 # Create a list version for commitment (to be consistent with paper)

37 indexer_polys_list = []

38 for matrix in ["A", "B", "C"]:

39 for poly_type in ["row", "col", "val"]:

40 key = f"{poly_type}_{matrix}"

41 indexer_polys_list.append(encoded_matrices[key])

42

43 # Commit to the indexer polynomials

44 index_commitments = self.kzg.commit(ck, indexer_polys_list)

45

46 # Organize commitments in a dictionary

47 commitments = {}

48 i = 0

49 for matrix in ["A", "B", "C"]:

50 for poly_type in ["row", "col", "val"]:

51 key = f"{poly_type}_{matrix}"

52 commitments[key] = index_commitments[i]

53 i += 1

54

55 # Create index proving key

56 ipk = {

57 "ck": ck,

58 "A": A,

59 "B": B,

60 "C": C,

61 "polynomials": indexer_polys,

62 "commitments": commitments,

63 # Additional data needed by the prover

64 "subgroups": {

65 "H": self.encoder.H,

66 "K": self.encoder.K,

67 "g_H": self.encoder.g_H,

68 "g_K": self.encoder.g_K,

69 "n": self.encoder.n,

70 "m": self.encoder.m

71 },

72 "vanishing_polys": {

73 "v_H": self.encoder.v_H,

74 "v_K": self.encoder.v_K,

75 }

76 }

77

78 # Create index verification key - only contains what verifier needs

79 ivk = {
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80 "rk": rk,

81 "commitments": commitments,

82 "subgroups": {

83 "n": self.encoder.n,

84 "m": self.encoder.m,

85 "g_H": self.encoder.g_H,

86 },

87 "vanishing_polys": {

88 "v_H": self.encoder.v_H,

89 "v_K": self.encoder.v_K,

90 }

91 }

92

93 return ipk, ivk

Code 3: Marlin indexer

1 from sage.all import prod

2

3 from kzg import KZG

4 from fft_ff import fft_ff, fft_ff_interpolation

5 from transcript import Transcript

6 from marlin.encoder import Encoder

7

8 class Prover:

9

10 def __init__(self, curve_type="bn254"):

11 self.kzg = KZG(curve_type=curve_type)

12

13 def prove(self, ipk, x, w, zero_knowledge_bound=2):

14 # Extract data from index proving key

15 ck = ipk["ck"]

16 A, B, C = ipk["A"], ipk["B"], ipk["C"]

17 polynomials = ipk["polynomials"]

18 H, K = ipk["subgroups"]["H"], ipk["subgroups"]["K"]

19 n, m = ipk["subgroups"]["n"], ipk["subgroups"]["m"]

20 g_K = ipk["subgroups"]["g_K"]

21 v_H, v_K = ipk["vanishing_polys"]["v_H"], ipk["vanishing_polys"]["v_K"]

22 R = self.kzg.R

23 X = self.kzg.X

24 Fq = self.kzg.Fq

25

26 # Create an encoder with the same field

27 self.encoder = Encoder(self.kzg.curve_order)

28 self.encoder.update_state(A, B, C)

29

30 # Create a transcript for the Fiat-Shamir transform

31 transcript = Transcript("marlin-proof", Fq)

32 transcript.append_message("public-inputs", x)

33

34 # Phase 1: Encode witness and linear combinations
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35 z = list(x) + list(w) # Full variable assignment

36 x_size = len(x)

37

38 # Compute vanishing polynomials for x and w

39 v_H_x = prod([X - h for h in H[:x_size]])

40 v_H_w = prod([X - h for h in H[x_size:]])

41

42 # Encode witness

43 encoded_witness = self.encoder.encode_witness(z, x_size)

44

45 # Encode linear combinations

46 encoded_combinations = self.encoder.encode_linear_combinations(z)

47

48 # Extract polynomials

49 w_poly = encoded_witness["w_poly"]

50 x_poly = encoded_witness["x_poly"]

51 zA_poly = encoded_combinations["zA_poly"]

52 zB_poly = encoded_combinations["zB_poly"]

53 zC_poly = encoded_combinations["zC_poly"]

54

55 # Add randomness for zero-knowledge (bounded independence)

56 b = zero_knowledge_bound

57

58 # Random polynomials of degree < b

59 w_random = sum(Fq.random_element() * X**i for i in range(b))

60 zA_random = sum(Fq.random_element() * X**i for i in range(b))

61 zB_random = sum(Fq.random_element() * X**i for i in range(b))

62 zC_random = sum(Fq.random_element() * X**i for i in range(b))

63

64 # Mask the polynomials with randomness

65 w_masked = w_poly + w_random * v_H_w

66 zA_masked = zA_poly + zA_random * v_H

67 zB_masked = zB_poly + zB_random * v_H

68 zC_masked = zC_poly + zC_random * v_H

69 z_masked = w_masked * v_H_x + x_poly

70

71 # Compute h_0 for the first check: zAzB - zC = h_0v_H

72 h_0 = (zA_masked * zB_masked - zC_masked) // v_H

73 assert h_0 * v_H == zA_masked * zB_masked - zC_masked, "h_0 polynomial is not well-defined"

74

75 # Generate random polynomial s(X) such that sum(s(H)) = 0

76 s_random = sum(Fq.random_element() * X**i for i in range(2*n+b-1))

77 s_sum = sum(s_random(h) for h in H)

78 s = s_random - s_sum/len(H) # Adjust to ensure sum over H is zero

79

80 # First round commitments

81 first_round_polys = [w_masked, zA_masked, zB_masked, zC_masked, h_0, s]

82 first_round_commitments = self.kzg.commit(ck, first_round_polys)

83

84 # Add commitments to transcript
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85 transcript.append_message("round1-commitments", first_round_commitments)

86

87 # Get first round challenges

88 eta_A = transcript.get_challenge("eta_A")

89 eta_B = transcript.get_challenge("eta_B")

90 eta_C = transcript.get_challenge("eta_C")

91 alpha = transcript.get_challenge("alpha")

92

93 # Ensure alpha is not in H (as required by protocol)

94 while alpha in H:

95 alpha = transcript.get_challenge("alpha-retry")

96

97 # Compute t(X) - the combined polynomial for _M * r_M(, X)

98 t = self._compute_t_polynomial(

99 polynomials, eta_A, eta_B, eta_C, alpha, v_H, K, R

100 )

101

102 # Compute first sumcheck polynomial

103 r = lambda a, b: self.encoder.u_H(a, b) # Helper function for u_H

104

105 # Compute the sum of s(X) + r(, X) * ( _M * z_M(X)) - t(X) * z(X) over H

106 poly = R(s + r(alpha, X)*(eta_A * zA_masked + eta_B * zB_masked + eta_C * zC_masked) - t * z_masked)

107

108 # Divide by vanishing polynomial v_H to get h_1 and g_1

109 h_1 = poly // v_H

110 g_1 = poly % v_H

111

112 assert g_1.constant_coefficient() == 0, "Sum over H is not 0"

113 g_1 = g_1 // X

114 assert h_1*v_H + X * g_1 == poly, "h_1 and g_1 are not well-defined"

115

116 # Second round commitments

117 second_round_polys = [t, g_1, h_1]

118 second_round_commitments = self.kzg.commit(ck, second_round_polys)

119

120 transcript.append_message("round2-commitments", second_round_commitments)

121

122 # Get second round challenge

123 beta_1 = transcript.get_challenge("beta_1")

124

125 # Ensure beta_1 is not in H

126 while beta_1 in H:

127 beta_1 = transcript.get_challenge("beta_1-retry")

128

129 # Calculate a(X) and b(X) polynomials for the third sumcheck

130 a, b = self._compute_a_b_polynomials(

131 polynomials, eta_A, eta_B, eta_C, beta_1, alpha, v_H, R

132 )

133

134 # Calculate sumcheck for the value of t()
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135 t_beta1 = t(beta_1)

136

137 # Calculate f_2, g_2, and h_2 polynomials for the third sumcheck

138 f_2 = self._compute_f2_polynomial(

139 polynomials, eta_A, eta_B, eta_C, beta_1, alpha, v_H, v_K, K, g_K, Fq, R

140 )

141

142 # Verify f_2(0) = t()/m

143 assert f_2.constant_coefficient() == t_beta1 / m, "f_2 polynomial is incorrect"

144

145 # Compute g_2 and h_2

146 g_2 = f_2 // X

147 h_2 = (a - b*f_2) // v_K

148 assert h_2 * v_K == a - b * (X * g_2 + t_beta1 / m), "h_2 and g_2 are not well-defined"

149

150 # Third round commitments

151 third_round_polys = [g_2, h_2]

152 third_round_commitments = self.kzg.commit(ck, third_round_polys)

153

154 transcript.append_message("round3-commitments", third_round_commitments)

155

156 # Get third round challenge

157 beta_2 = transcript.get_challenge("beta_2")

158

159 # f1(x) = zA()*zB(x) - zC(x) - h_0(x)*v_H()

160 f_1 = zA_masked(beta_1) * zB_masked - zC_masked - h_0 * v_H(beta_1)

161

162 # f2(x) = s(x) + r(, )*(_A*zA() + _B*zB(x) + _C*zC(x)) - t()*z(x) - h_1(x)*v_H() - g_1(x)

163 z = w_masked * v_H_x(beta_1) + x_poly(beta_1)

164 f_2 = s + r(alpha, beta_1) * (eta_A * zA_masked(beta_1) + eta_B * zB_masked + eta_C * zC_masked) - t_beta1 * z - h_1 * v_H(beta_1) - beta_1 * g_1

165

166 # f3(x) = h_2(x)*v_K() - a(x) + b()*(g_2(x) + t()/m)

167 # a(x) = _M * v_H() * v_H() * val_M(x) _{NM} ( - row_N())( - col_N())

168

169 a_lin, b_lin = self._compute_a_b_linear_polynomials(

170 polynomials, eta_A, eta_B, eta_C, beta_1, beta_2, alpha, v_H, R, Fq

171 )

172

173 f_3 = h_2 * v_K(beta_2) - a_lin + b_lin * (beta_2 * g_2 + t_beta1 / m)

174

175 assert f_1(beta_1) == 0, "f_1 polynomial is not well-defined"

176 assert f_2(beta_1) == 0, "f_2 polynomial is not well-defined"

177 assert f_3(beta_2) == 0, "f_3 polynomial is not well-defined"

178

179 # Evaluate polynomials at the challenge points

180 polys_beta1 = [zA_masked, t]

181 evals_beta1 = [p(beta_1) for p in polys_beta1]

182

183 # Polynomials for beta_2 evaluation

184 polys_beta2 = []
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185 for matrix in ["A", "B", "C"]:

186 for poly_type in ["row", "col"]:

187 key = f"{poly_type}_{matrix}"

188 polys_beta2.append(polynomials[key])

189

190 evals_beta2 = [p(beta_2) for p in polys_beta2]

191

192 # Add evaluations to transcript

193 transcript.append_message("evaluations-beta1", evals_beta1)

194 transcript.append_message("evaluations-beta2", evals_beta2)

195

196 xi_1 = transcript.get_challenge("xi_1")

197 xi_2 = transcript.get_challenge("xi_2")

198

199 # Generate KZG batch proofs

200 polys_beta1 = [f_1, f_2] + polys_beta1

201 polys_beta2 = [f_3] + polys_beta2

202 proof_beta1 = self.kzg.open(ck, polys_beta1, beta_1, xi_1)

203 proof_beta2 = self.kzg.open(ck, polys_beta2, beta_2, xi_2)

204

205 # Assemble the final proof

206 proof = {

207 "commitments": {

208 "first_round": first_round_commitments,

209 "second_round": second_round_commitments,

210 "third_round": third_round_commitments

211 },

212 "evaluations": {

213 "beta1": evals_beta1,

214 "beta2": evals_beta2

215 },

216 "kzg_proofs": {

217 "beta1": proof_beta1,

218 "beta2": proof_beta2

219 }

220 }

221

222 return proof

223

224 def _compute_t_polynomial(self, polynomials, eta_A, eta_B, eta_C, alpha, v_H, K, R):

225 # Extract row, col, val polynomials for each matrix

226 row_A = polynomials["row_A"]

227 col_A = polynomials["col_A"]

228 val_A = polynomials["val_A"]

229

230 row_B = polynomials["row_B"]

231 col_B = polynomials["col_B"]

232 val_B = polynomials["val_B"]

233

234 row_C = polynomials["row_C"]
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235 col_C = polynomials["col_C"]

236 val_C = polynomials["val_C"]

237

238 X = R.gen()

239 t_poly = R(0)

240

241 # Compute t(X) = _M _K [v_H(X)v_H()val_M*() / ((X - row_M*())( - col_M*()))]

242 for kappa in K:

243 # Term for matrix A

244 denom_A = (X - row_A(kappa)) * (alpha - col_A(kappa))

245 if denom_A != 0:

246 term_A = (v_H(X) * v_H(alpha) * val_A(kappa)) / denom_A

247 t_poly += eta_A * term_A

248

249 # Term for matrix B

250 denom_B = (X - row_B(kappa)) * (alpha - col_B(kappa))

251 if denom_B != 0:

252 term_B = (v_H(X) * v_H(alpha) * val_B(kappa)) / denom_B

253 t_poly += eta_B * term_B

254

255 # Term for matrix C

256 denom_C = (X - row_C(kappa)) * (alpha - col_C(kappa))

257 if denom_C != 0:

258 term_C = (v_H(X) * v_H(alpha) * val_C(kappa)) / denom_C

259 t_poly += eta_C * term_C

260

261 return R(t_poly)

262

263 def _compute_a_b_polynomials(self, polynomials, eta_A, eta_B, eta_C, beta_1, alpha, v_H, R):

264 # Extract row, col, val polynomials for each matrix

265 row_A = polynomials["row_A"]

266 col_A = polynomials["col_A"]

267 val_A = polynomials["val_A"]

268

269 row_B = polynomials["row_B"]

270 col_B = polynomials["col_B"]

271 val_B = polynomials["val_B"]

272

273 row_C = polynomials["row_C"]

274 col_C = polynomials["col_C"]

275 val_C = polynomials["val_C"]

276

277 a = R(0)

278 b = R(1) # Start with 1 for the product

279

280 # Process each matrix

281 for matrix_idx, (eta, row, col, val) in enumerate([

282 (eta_A, row_A, col_A, val_A),

283 (eta_B, row_B, col_B, val_B),

284 (eta_C, row_C, col_C, val_C)
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285 ]):

286 # Calculate the product term for other matrices

287 other_product = R(1)

288 for other_idx, (other_row, other_col) in enumerate([

289 (row_A, col_A), (row_B, col_B), (row_C, col_C)

290 ]):

291 if other_idx != matrix_idx:

292 other_product *= (beta_1 - other_row) * (alpha - other_col)

293

294 # Add term to a(X)

295 a += eta * v_H(beta_1) * v_H(alpha) * val * other_product

296

297 # Update b(X) with this matrix’s factors

298 b *= (beta_1 - row) * (alpha - col)

299

300 return a, b

301

302 def _compute_a_b_linear_polynomials(self, polynomials, eta_A, eta_B, eta_C, beta_1, beta_2, alpha, v_H, R, Fq):

303 row_A = polynomials["row_A"]

304 col_A = polynomials["col_A"]

305 val_A = polynomials["val_A"]

306

307 row_B = polynomials["row_B"]

308 col_B = polynomials["col_B"]

309 val_B = polynomials["val_B"]

310

311 row_C = polynomials["row_C"]

312 col_C = polynomials["col_C"]

313 val_C = polynomials["val_C"]

314 a = R(0)

315 b = Fq(1)

316

317 for matrix_idx, (eta, row, col, val) in enumerate([

318 (eta_A, row_A, col_A, val_A),

319 (eta_B, row_B, col_B, val_B),

320 (eta_C, row_C, col_C, val_C)

321 ]):

322 other_product = Fq(1)

323 for other_idx, (other_row, other_col) in enumerate([

324 (row_A, col_A), (row_B, col_B), (row_C, col_C)

325 ]):

326 if other_idx != matrix_idx:

327 other_product *= (beta_1 - other_row(beta_2)) * (alpha - other_col(beta_2))

328

329 a += eta * v_H(beta_1) * v_H(alpha) * val * other_product

330 b *= (beta_1 - row(beta_2)) * (alpha - col(beta_2))

331

332 return a, b

333

334 def _compute_f2_polynomial(self, polynomials, eta_A, eta_B, eta_C, beta_1, alpha, v_H, v_K, K, g_K, Fq, R):
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335 # Extract row, col, val polynomials for each matrix

336 row_A = polynomials["row_A"]

337 col_A = polynomials["col_A"]

338 val_A = polynomials["val_A"]

339

340 row_B = polynomials["row_B"]

341 col_B = polynomials["col_B"]

342 val_B = polynomials["val_B"]

343

344 row_C = polynomials["row_C"]

345 col_C = polynomials["col_C"]

346 val_C = polynomials["val_C"]

347

348 # Pre-compute v_H values

349 v_H_beta1 = v_H(beta_1)

350 v_H_alpha = v_H(alpha)

351

352 # Pre-compute evaluations at points in K for efficiency

353 row_A_evals = fft_ff(list(row_A), g_K, Fq)

354 col_A_evals = fft_ff(list(col_A), g_K, Fq)

355 val_A_evals = fft_ff(list(val_A), g_K, Fq)

356

357 row_B_evals = fft_ff(list(row_B), g_K, Fq)

358 col_B_evals = fft_ff(list(col_B), g_K, Fq)

359 val_B_evals = fft_ff(list(val_B), g_K, Fq)

360

361 row_C_evals = fft_ff(list(row_C), g_K, Fq)

362 col_C_evals = fft_ff(list(col_C), g_K, Fq)

363 val_C_evals = fft_ff(list(val_C), g_K, Fq)

364

365 # Compute f2() for each K

366 f2_evals = []

367

368 for i in range(len(K)):

369 # Calculate denominators for each matrix

370 denom_A = (beta_1 - row_A_evals[i]) * (alpha - col_A_evals[i])

371 denom_B = (beta_1 - row_B_evals[i]) * (alpha - col_B_evals[i])

372 denom_C = (beta_1 - row_C_evals[i]) * (alpha - col_C_evals[i])

373

374 # Calculate individual terms with safeguards for division by zero

375 term_A = v_H_beta1 * v_H_alpha * val_A_evals[i] / denom_A if denom_A != 0 else 0

376 term_B = v_H_beta1 * v_H_alpha * val_B_evals[i] / denom_B if denom_B != 0 else 0

377 term_C = v_H_beta1 * v_H_alpha * val_C_evals[i] / denom_C if denom_C != 0 else 0

378

379 # Combine terms with challenge values

380 f2_evals.append(eta_A * term_A + eta_B * term_B + eta_C * term_C)

381

382 # Interpolate to get the polynomial

383 f_2 = fft_ff_interpolation(f2_evals, g_K, Fq)

384
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385 return f_2

Code 4: Marlin prover

1 from sage.all import prod

2

3 from kzg import KZG

4 from transcript import Transcript

5

6 class Verifier:

7

8 def __init__(self, curve_type="bn254"):

9 # Initialize the KZG polynomial commitment scheme with specified curve

10 self.kzg = KZG(curve_type=curve_type)

11

12 def verify(self, ivk, x, proof):

13 # Extract data from verification key and proof

14 rk = ivk["rk"]

15 index_commitments = ivk["commitments"]

16 n, m = ivk["subgroups"]["n"], ivk["subgroups"]["m"]

17 g_H = ivk["subgroups"]["g_H"]

18 v_H, v_K = ivk["vanishing_polys"]["v_H"], ivk["vanishing_polys"]["v_K"]

19

20 # Extract proof components

21 first_round_commitments = proof["commitments"]["first_round"]

22 second_round_commitments = proof["commitments"]["second_round"]

23 third_round_commitments = proof["commitments"]["third_round"]

24 evals_beta1 = proof["evaluations"]["beta1"]

25 evals_beta2 = proof["evaluations"]["beta2"]

26 kzg_proof_beta1 = proof["kzg_proofs"]["beta1"]

27 kzg_proof_beta2 = proof["kzg_proofs"]["beta2"]

28

29 # Create a transcript for the Fiat-Shamir transform

30 R = self.kzg.R

31 Fq = self.kzg.Fq

32 transcript = Transcript("marlin-proof", Fq)

33 transcript.append_message("public-inputs", x)

34

35 # Recreate the transcript to generate the same challenges as the prover

36 transcript.append_message("round1-commitments", first_round_commitments)

37

38 # Get first round challenges

39 eta_A = transcript.get_challenge("eta_A")

40 eta_B = transcript.get_challenge("eta_B")

41 eta_C = transcript.get_challenge("eta_C")

42 alpha = transcript.get_challenge("alpha")

43

44 # Add second round commitments and get challenge

45 transcript.append_message("round2-commitments", second_round_commitments)

46 beta_1 = transcript.get_challenge("beta_1")

47
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48 # Add third round commitments and get challenge

49 transcript.append_message("round3-commitments", third_round_commitments)

50 beta_2 = transcript.get_challenge("beta_2")

51

52 # Add evaluations to transcript

53 transcript.append_message("evaluations-beta1", evals_beta1)

54 transcript.append_message("evaluations-beta2", evals_beta2)

55

56 # Get opening challenges for batch verification

57 xi_1 = transcript.get_challenge("xi_1")

58 xi_2 = transcript.get_challenge("xi_2")

59

60 # Extract evaluations from the proof

61 [zA_beta1, t_beta1] = evals_beta1

62

63 # Get commitments

64 [w_comm, zA_comm, zB_comm, zC_comm, h0_comm, s_comm] = first_round_commitments

65 [t_comm, g1_comm, h1_comm] = second_round_commitments

66 [g2_comm, h2_comm] = third_round_commitments

67

68 # Compute linearization polynomial f1, f2, f3 commitments

69

70 # f1(x) = zA()*zB(x) - zC(x) - h_0(x)*v_H()

71 f1_comm = self.kzg.multiply(zB_comm, int(zA_beta1))

72 f1_comm = self.kzg.add(f1_comm, self.kzg.neg(zC_comm))

73 f1_comm = self.kzg.add(f1_comm, self.kzg.multiply(h0_comm, int(-v_H(beta_1))))

74

75 # f2(x) = s(x) + r(, )*(_A*zA() + _B*zB(x) + _C*zC(x)) - t()*z(x) - h_1(x)*v_H() - g_1(x)

76 H_x = [g_H**i for i in range(len(x))]

77 v_H_x_beta1 = prod([(beta_1 - H_x[i]) for i in range(len(x))])

78 x_points = [(H_x[i], x[i]) for i in range(len(x))]

79 x_poly = R.lagrange_polynomial(x_points)

80 x_beta1 = x_poly(beta_1)

81

82 z_comm = self.kzg.multiply(w_comm, int(v_H_x_beta1))

83 z_comm = self.kzg.add(z_comm, self.kzg.multiply(self.kzg.G1, int(x_beta1)))

84

85 r_alpha_beta1 = (alpha**n - beta_1**n) / (alpha - beta_1)

86

87 f2_comm = s_comm

88 temp = self.kzg.multiply(self.kzg.G1, int(eta_A * zA_beta1))

89 temp = self.kzg.add(temp, self.kzg.multiply(zB_comm, int(eta_B)))

90 temp = self.kzg.add(temp, self.kzg.multiply(zC_comm, int(eta_C)))

91 temp = self.kzg.multiply(temp, int(r_alpha_beta1))

92 f2_comm = self.kzg.add(f2_comm, temp)

93 f2_comm = self.kzg.add(f2_comm, self.kzg.multiply(z_comm, int(-t_beta1)))

94 f2_comm = self.kzg.add(f2_comm, self.kzg.multiply(h1_comm, int(-v_H(beta_1))))

95 f2_comm = self.kzg.add(f2_comm, self.kzg.multiply(g1_comm, int(-beta_1)))

96

97 # f3(x) = h_2(x)*v_K() - a(x) + b()*(g_2(x) + t()/m)
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98

99 a_comm, b_lin = self._compute_a_b_linear(index_commitments, evals_beta2, beta_1, alpha, eta_A, eta_B, eta_C, v_H, Fq)

100 f3_comm = self.kzg.multiply(h2_comm, int(v_K(beta_2)))

101 f3_comm = self.kzg.add(f3_comm, self.kzg.neg(a_comm))

102 temp = self.kzg.multiply(g2_comm, int(beta_2))

103 temp = self.kzg.add(temp, self.kzg.multiply(self.kzg.G1, int(t_beta1 / m)))

104 temp = self.kzg.multiply(temp, int(b_lin))

105 f3_comm = self.kzg.add(f3_comm, temp)

106

107 # batch verify

108 beta1_commitments = [f1_comm, f2_comm, zA_comm, t_comm]

109

110 beta2_commitments = [f3_comm]

111

112 for matrix in ["A", "B", "C"]:

113 for poly_type in ["row", "col"]:

114 key = f"{poly_type}_{matrix}"

115 beta2_commitments.append(index_commitments[key])

116

117 beta1_evaluations = [0] * 2 + evals_beta1

118 beta2_evaluations = [0] + evals_beta2

119

120 commitment_list = [beta1_commitments, beta2_commitments]

121 z_values = [beta_1, beta_2]

122 evaluation_list = [beta1_evaluations, beta2_evaluations]

123 proof_list = [kzg_proof_beta1, kzg_proof_beta2]

124 xi_list = [xi_1, xi_2]

125 batch_result = self.kzg.batch_check(rk, commitment_list, z_values, evaluation_list, proof_list, xi_list)

126

127 return batch_result

128

129 def _compute_a_b_linear(self, index_commitments, evals_beta2, beta_1, alpha, eta_A, eta_B, eta_C, v_H, Fq):

130 val_A_comm, val_B_comm, val_C_comm = (

131 index_commitments["val_A"],

132 index_commitments["val_B"],

133 index_commitments["val_C"],

134 )

135

136 [row_A_beta2, col_A_beta2,

137 row_B_beta2, col_B_beta2,

138 row_C_beta2, col_C_beta2] = evals_beta2

139

140 a = self.kzg.multiply(self.kzg.G1, int(0))

141 b = Fq(1)

142

143 for matrix_idx, (eta, row, col, val) in enumerate([

144 (eta_A, row_A_beta2, col_A_beta2, val_A_comm),

145 (eta_B, row_B_beta2, col_B_beta2, val_B_comm),

146 (eta_C, row_C_beta2, col_C_beta2, val_C_comm)

147 ]):
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148 other_product = Fq(1)

149 for other_idx, (other_row, other_col) in enumerate([

150 (row_A_beta2, col_A_beta2),

151 (row_B_beta2, col_B_beta2),

152 (row_C_beta2, col_C_beta2)

153 ]):

154 if other_idx != matrix_idx:

155 other_product *= (beta_1 - other_row) * (alpha - other_col)

156

157

158 a = self.kzg.add(a, self.kzg.multiply(val, int(eta * v_H(beta_1) * v_H(alpha) * other_product)))

159 b *= (beta_1 - row) * (alpha - col)

160

161 return a, b

Code 5: Marlin verifier
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APPENDIX 3: PLONK

1 from sage.all import PolynomialRing, GF

2

3 from fft_ff import fft_ff_interpolation

4

5 class Encoder:

6

7 def __init__(self, q):

8 self.Fq = GF(q) # Finite field GF(q)

9 self.R = PolynomialRing(self.Fq, ’X’)

10 self.X = self.R.gen()

11

12 def find_subgroup_size(self, n):

13 return 2 ** ((n - 1).bit_length())

14

15 def update_state(self, qM, qL, qR, qO, qC, perm):

16 # Calculate appropriate subgroup size (must be power of 2)

17 self.n = self.find_subgroup_size(len(qM))

18

19 # Generate subgroup H with generator g

20 self.g = self.Fq(1).nth_root(self.n)

21

22 # Store circuit data

23 self.qM = qM

24 self.qL = qL

25 self.qR = qR

26 self.qO = qO

27 self.qC = qC

28 self.perm = perm

29

30 # Generate subgroup H (multiplicative subgroup of order n)

31 self.H = [self.g**i for i in range(self.n)]

32

33 # Find suitable multipliers for creating cosets (k1H and k2H)

34 self._find_coset_multipliers()

35

36 # Generate cosets

37 self.k1H = [self.k1 * h for h in self.H]

38 self.k2H = [self.k2 * h for h in self.H]

39

40 # Compute vanishing polynomial for H: Z_H(X) = Xˆn - 1

41 self.v_H = self.X**self.n - 1

42

43 def _find_coset_multipliers(self):

44 n = self.n

45

46 # Keep trying random values until we find suitable ones

47 while True:

48 k1 = self.Fq.random_element()
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49 k2 = self.Fq.random_element()

50

51 # Check that k1 and k2 satisfy the required conditions:

52 # 1. k1ˆn 1 (k1 is not in H)

53 # 2. k2ˆn 1 (k2 is not in H)

54 # 3. (k1/k2)ˆn 1 (k1H and k2H are disjoint)

55 # 4. k1, k2 0 (non-zero)

56 if (k1**n != 1 and

57 k2**n != 1 and

58 (k1/k2)**n != 1 and

59 k1 != 0 and k2 != 0):

60 self.k1 = k1

61 self.k2 = k2

62 return

63

64 def encode_selectors(self):

65 # Ensure the state has been initialized

66 if not hasattr(self, ’H’):

67 raise ValueError("Call update_state before encoding selectors")

68

69 # Interpolate the selector polynomials

70 qM_poly = fft_ff_interpolation(self.qM, self.g, self.Fq)

71 qL_poly = fft_ff_interpolation(self.qL, self.g, self.Fq)

72 qR_poly = fft_ff_interpolation(self.qR, self.g, self.Fq)

73 qO_poly = fft_ff_interpolation(self.qO, self.g, self.Fq)

74 qC_poly = fft_ff_interpolation(self.qC, self.g, self.Fq)

75

76 return {

77 "qM": qM_poly,

78 "qL": qL_poly,

79 "qR": qR_poly,

80 "qO": qO_poly,

81 "qC": qC_poly

82 }

83

84 def encode_permutation(self):

85 if not hasattr(self, ’H’) or not hasattr(self, ’k1’) or not hasattr(self, ’k2’):

86 raise ValueError("Call update_state before encoding permutation")

87

88 n = self.n

89

90 # Function to map position indices to elements in H ł k1H ł k2H

91 def index_to_element(i):

92 if 0 <= i < n:

93 return self.H[i] # Left wires mapped to H

94 elif n <= i < 2*n:

95 return self.k1H[i-n] # Right wires mapped to k1H

96 elif 2*n <= i < 3*n:

97 return self.k2H[i-2*n] # Output wires mapped to k2H

98 else:
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99 raise ValueError(f"Index {i} out of range [0, {3*n-1}]")

100

101 # Compute permutation star values for each group

102 S_sigma1_values = [index_to_element(self.perm[i]) for i in range(n)]

103 S_sigma2_values = [index_to_element(self.perm[i+n]) for i in range(n)]

104 S_sigma3_values = [index_to_element(self.perm[i+2*n]) for i in range(n)]

105

106 # Interpolate to get the permutation polynomials

107 S_sigma1_poly = fft_ff_interpolation(S_sigma1_values, self.g, self.Fq)

108 S_sigma2_poly = fft_ff_interpolation(S_sigma2_values, self.g, self.Fq)

109 S_sigma3_poly = fft_ff_interpolation(S_sigma3_values, self.g, self.Fq)

110

111 sigma_star = S_sigma1_values + S_sigma2_values + S_sigma3_values

112

113 return {

114 "S_sigma1": S_sigma1_poly,

115 "S_sigma2": S_sigma2_poly,

116 "S_sigma3": S_sigma3_poly,

117 "sigma_star": sigma_star

118 }

119

120 def encode_witness(self, w, x_size=0):

121 if not hasattr(self, ’H’):

122 raise ValueError("Call update_state before encoding witness")

123

124 n = self.n

125

126 # Split witness into a (left), b (right), c (output) values

127 a_values = w[:n]

128 b_values = w[n:2*n]

129 c_values = w[2*n:3*n]

130

131 # Interpolate to get witness polynomials

132 a_poly = fft_ff_interpolation(a_values, self.g, self.Fq)

133 b_poly = fft_ff_interpolation(b_values, self.g, self.Fq)

134 c_poly = fft_ff_interpolation(c_values, self.g, self.Fq)

135

136 # Extract public inputs if specified

137 x = w[:x_size] if x_size > 0 else []

138

139 # Compute public input polynomial if there are public inputs

140 PI = self.compute_public_input_poly(x) if x_size > 0 else self.R(0)

141

142 return {

143 "a": a_poly,

144 "b": b_poly,

145 "c": c_poly,

146 "x": x,

147 "PI": PI

148 }
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149

150 def compute_lagrange_basis(self, i):

151 if not hasattr(self, ’H’):

152 raise ValueError("Call update_state before computing Lagrange basis")

153

154 n = self.n

155 g = self.g

156 X = self.X

157

158 # Compute the i-th Lagrange basis polynomial for H

159 numerator = g**i * (X**n - 1)

160 denominator = n * (X - g**i)

161 L_i = numerator // denominator

162

163 return L_i

164

165 def compute_public_input_poly(self, x):

166 if not hasattr(self, ’H’):

167 raise ValueError("Call update_state before computing public input poly")

168

169 PI = self.R(0)

170 for i, x_i in enumerate(x):

171 L_i = self.compute_lagrange_basis(i)

172 PI -= x_i * L_i

173

174 return PI

Code 6: Plonk encoder

1 from kzg import KZG

2 from plonk.encoder import Encoder

3

4 class Indexer:

5

6 def __init__(self, curve_type="bn254"):

7 self.kzg = KZG(curve_type=curve_type)

8 self.encoder = Encoder(self.kzg.curve_order)

9

10 def preprocess(self, qM, qL, qR, qO, qC, perm, max_degree):

11 # Setup KZG commitment scheme

12 ck, rk = self.kzg.setup(max_degree)

13

14 # Update encoder state with circuit description

15 self.encoder.update_state(qM, qL, qR, qO, qC, perm)

16

17 # Encode circuit into polynomials

18 selector_polys = self.encoder.encode_selectors()

19 permutation_polys = self.encoder.encode_permutation()

20

21 # Organize polynomials into ordered dictionary

22 indexer_polys = {
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23 "qM": selector_polys["qM"],

24 "qL": selector_polys["qL"],

25 "qR": selector_polys["qR"],

26 "qO": selector_polys["qO"],

27 "qC": selector_polys["qC"],

28 "S_sigma1": permutation_polys["S_sigma1"],

29 "S_sigma2": permutation_polys["S_sigma2"],

30 "S_sigma3": permutation_polys["S_sigma3"]

31 }

32

33 # Create ordered list for commitment

34 poly_list = [

35 indexer_polys["qM"],

36 indexer_polys["qL"],

37 indexer_polys["qR"],

38 indexer_polys["qO"],

39 indexer_polys["qC"],

40 indexer_polys["S_sigma1"],

41 indexer_polys["S_sigma2"],

42 indexer_polys["S_sigma3"]

43 ]

44

45 # Commit to the indexer polynomials

46 commitments_list = self.kzg.commit(ck, poly_list)

47

48 # Organize commitments in a dictionary

49 indexer_commitments = {

50 "qM": commitments_list[0],

51 "qL": commitments_list[1],

52 "qR": commitments_list[2],

53 "qO": commitments_list[3],

54 "qC": commitments_list[4],

55 "S_sigma1": commitments_list[5],

56 "S_sigma2": commitments_list[6],

57 "S_sigma3": commitments_list[7]

58 }

59

60 # Create index proving key - everything the prover needs

61 ipk = {

62 "ck": ck,

63 "polynomials": indexer_polys,

64 "commitments": indexer_commitments,

65 # Additional data needed by the prover

66 "subgroups": {

67 "H": self.encoder.H,

68 "n": self.encoder.n,

69 "g": self.encoder.g,

70 "k1": self.encoder.k1,

71 "k2": self.encoder.k2

72 },
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73 "vanishing_poly": self.encoder.v_H,

74 "sigma_star": permutation_polys["sigma_star"],

75 }

76

77 # Create index verification key - only what the verifier needs

78 ivk = {

79 "rk": rk,

80 "commitments": indexer_commitments,

81 "subgroups": {

82 "n": self.encoder.n,

83 "g": self.encoder.g,

84 "k1": self.encoder.k1,

85 "k2": self.encoder.k2

86 }

87 }

88

89 return ipk, ivk

Code 7: Plonk indexer

1 from kzg import KZG

2 from fft_ff import fft_ff_interpolation

3 from transcript import Transcript

4 from plonk.encoder import Encoder

5

6 class Prover:

7

8 def __init__(self, curve_type="bn254"):

9 self.kzg = KZG(curve_type=curve_type)

10

11 def prove(self, ipk, x, w):

12 # Extract data from index proving key

13 ck = ipk["ck"]

14 polynomials = ipk["polynomials"]

15 H = ipk["subgroups"]["H"]

16 n = ipk["subgroups"]["n"]

17 g = ipk["subgroups"]["g"]

18 k1 = ipk["subgroups"]["k1"]

19 k2 = ipk["subgroups"]["k2"]

20 v_H = ipk["vanishing_poly"]

21 sigma_star = ipk["sigma_star"]

22 Fq = self.kzg.Fq

23 R = self.kzg.R

24 X = self.kzg.X

25

26 # Create an encoder with the same field

27 self.encoder = Encoder(self.kzg.curve_order)

28

29 # Create a transcript for the Fiat-Shamir transform

30 transcript = Transcript("plonk-proof", Fq)

31
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32 # Add public inputs to the transcript

33 transcript.append_message("public-inputs", x)

34

35 # Compute the full witness

36 full_witness = x + w

37

38 # Initialize the encoder with a temporary empty permutation (for PI computation)

39 empty_perm = [0] * (3 * n)

40 empty_selectors = [Fq(0)] * n

41 self.encoder.update_state(empty_selectors, empty_selectors, empty_selectors, empty_selectors, empty_selectors, empty_perm)

42

43 # Compute public input polynomial

44 PI = self.encoder.compute_public_input_poly(x)

45

46 # ----- Round 1: Wire polynomials -----

47 # Generate random blinding scalars

48 b1, b2 = Fq.random_element(), Fq.random_element()

49 b3, b4 = Fq.random_element(), Fq.random_element()

50 b5, b6 = Fq.random_element(), Fq.random_element()

51 b7, b8, b9 = Fq.random_element(), Fq.random_element(), Fq.random_element()

52

53 # Split witness into a, b, c values

54 a_values = full_witness[:n]

55 b_values = full_witness[n:2*n]

56 c_values = full_witness[2*n:3*n]

57

58 # Compute wire polynomials a(X), b(X), c(X) with blinding factors for zero-knowledge

59 a_poly = (b1 * X + b2) * v_H + fft_ff_interpolation(a_values, g, Fq)

60 b_poly = (b3 * X + b4) * v_H + fft_ff_interpolation(b_values, g, Fq)

61 c_poly = (b5 * X + b6) * v_H + fft_ff_interpolation(c_values, g, Fq)

62

63 # Commit to wire polynomials

64 wire_polys = [a_poly, b_poly, c_poly]

65 wire_commitments = self.kzg.commit(ck, wire_polys)

66 a_commit, b_commit, c_commit = wire_commitments

67

68 # Add commitments to transcript

69 transcript.append_message("round1-commitments", wire_commitments)

70

71 # ----- Round 2: Permutation polynomial -----

72 # Get permutation challenges

73 beta = transcript.get_challenge("beta")

74 gamma = transcript.get_challenge("gamma")

75

76 # Compute permutation polynomial z(X)

77 z_poly = self._compute_permutation_polynomial(

78 a_values, b_values, c_values,

79 sigma_star,

80 beta, gamma, g, k1, k2, n, H, v_H, X, Fq,

81 b7, b8, b9
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82 )

83

84 # Verify first Lagrange polynomial condition: L_1(X)(z(X) - 1) = 0 over H

85 L1 = R((X**n - 1) / (n * (X - 1)))

86 assert L1 * (z_poly - 1) % v_H == 0, "z_poly does not satisfy L1 condition"

87

88 # Commit to permutation polynomial

89 z_commit = self.kzg.commit(ck, [z_poly])[0]

90

91 # Add commitment to transcript

92 transcript.append_message("round2-commitment", z_commit)

93

94 # ----- Round 3: Quotient polynomial -----

95 # Get quotient challenge

96 alpha = transcript.get_challenge("alpha")

97

98 # Compute quotient polynomial t(X)

99 t_poly = self._compute_quotient_polynomial(

100 a_poly, b_poly, c_poly, z_poly,

101 polynomials["qM"], polynomials["qL"], polynomials["qR"],

102 polynomials["qO"], polynomials["qC"],

103 polynomials["S_sigma1"], polynomials["S_sigma2"], polynomials["S_sigma3"],

104 alpha, beta, gamma, PI, v_H, H, n, g, k1, k2, R, X

105 )

106

107 # Split t(X) into degree < n polynomials

108 t_lo, t_mid, t_hi = self._split_quotient_polynomial(t_poly, n, X, R, Fq)

109

110 # Commit to the parts of t(X)

111 t_polys = [t_lo, t_mid, t_hi]

112 t_commitments = self.kzg.commit(ck, t_polys)

113 t_lo_commit, t_mid_commit, t_hi_commit = t_commitments

114

115 # Add commitments to transcript

116 transcript.append_message("round3-commitments", t_commitments)

117

118 # ----- Round 4: Evaluation point -----

119 # Get evaluation challenge

120 zeta = transcript.get_challenge("zeta")

121

122 # Compute opening evaluations

123 a_zeta = a_poly(zeta)

124 b_zeta = b_poly(zeta)

125 c_zeta = c_poly(zeta)

126 s_sigma1_zeta = polynomials["S_sigma1"](zeta)

127 s_sigma2_zeta = polynomials["S_sigma2"](zeta)

128 z_omega_zeta = z_poly(zeta * g) # z()

129

130 # Add evaluations to transcript

131 evaluations = [a_zeta, b_zeta, c_zeta, s_sigma1_zeta, s_sigma2_zeta, z_omega_zeta]
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132 transcript.append_message("round4-evaluations", evaluations)

133

134 # ----- Round 5: Opening proof -----

135 # Get opening challenge

136 v = transcript.get_challenge("v")

137

138 # Compute linearization polynomial r(X)

139 r_poly = self._compute_linearization_polynomial(

140 a_zeta, b_zeta, c_zeta, s_sigma1_zeta, s_sigma2_zeta, z_omega_zeta,

141 polynomials["qM"], polynomials["qL"], polynomials["qR"],

142 polynomials["qO"], polynomials["qC"], polynomials["S_sigma3"],

143 z_poly, t_lo, t_mid, t_hi, alpha, beta, gamma, zeta, PI, n, k1, k2, R

144 )

145

146 # Verify linearization polynomial r() = 0

147 assert r_poly(zeta) == 0, "r() should be zero"

148

149 # First batch: Polynomials to be opened at zeta

150 zeta_polys = [

151 r_poly,

152 a_poly,

153 b_poly,

154 c_poly,

155 polynomials["S_sigma1"],

156 polynomials["S_sigma2"]

157 ]

158

159 # Get the opening proofs

160 W_z = self.kzg.open(ck, zeta_polys, zeta, v)

161 W_zw = self.kzg.open(ck, [z_poly], zeta * g, v)

162

163 # Assemble the final proof

164 proof = {

165 "commitments": {

166 "a": a_commit,

167 "b": b_commit,

168 "c": c_commit,

169 "z": z_commit,

170 "t_lo": t_lo_commit,

171 "t_mid": t_mid_commit,

172 "t_hi": t_hi_commit,

173 },

174 "evaluations": {

175 "a": a_zeta,

176 "b": b_zeta,

177 "c": c_zeta,

178 "s_sigma1": s_sigma1_zeta,

179 "s_sigma2": s_sigma2_zeta,

180 "z_omega": z_omega_zeta

181 },
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182 "kzg_proofs": {

183 "W_z": W_z,

184 "W_zw": W_zw

185 }

186 }

187

188 return proof

189

190 def _compute_permutation_polynomial(self, a_values, b_values, c_values,

191 sigma_star,

192 beta, gamma, g, k1, k2, n, H, v_H, X, Fq,

193 b7, b8, b9):

194 # Add blinding factors for zero-knowledge

195 z_poly = (b7 * X**2 + b8 * X + b9) * v_H

196

197 # Compute the permutation accumulator at each point

198 z_values = [Fq(1)] # z() = 1

199

200 for i in range(n - 1):

201 # Compute numerator: (a() + + )(b() + k + )(c() + k + )

202 num = ((a_values[i] + beta * H[i] + gamma) *

203 (b_values[i] + beta * k1 * H[i] + gamma) *

204 (c_values[i] + beta * k2 * H[i] + gamma))

205

206 # Compute denominator: (a() + () + )(b() + () + )(c() + () + )

207 den = ((a_values[i] + beta * sigma_star[i] + gamma) *

208 (b_values[i] + beta * sigma_star[i + n] + gamma) *

209 (c_values[i] + beta * sigma_star[i + 2*n] + gamma))

210

211 if den == 0:

212 # This should be extremely rare and would indicate an issue with the circuit

213 raise ValueError("Denominator is zero in permutation polynomial calculation")

214

215 # Update the accumulator: z() = z()num/den

216 z_values.append(z_values[-1] * (num / den))

217

218 # Interpolate the accumulator values to get the rest of z(X)

219 z_interp = fft_ff_interpolation(z_values, g, Fq)

220

221 # Combine with the blinding part

222 z_poly += z_interp

223

224 return z_poly

225

226 def _compute_quotient_polynomial(self, a_poly, b_poly, c_poly, z_poly,

227 qM, qL, qR, qO, qC,

228 S_sigma1, S_sigma2, S_sigma3,

229 alpha, beta, gamma, PI, v_H, H, n, g, k1, k2, R, X):

230 # Term 1: Gate constraints

231 term1 = R((a_poly * b_poly * qM + a_poly * qL + b_poly * qR + c_poly * qO + PI + qC) / v_H)
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232

233 # Term 2: Permutation constraints (part 1)

234 term2 = alpha * (z_poly * (a_poly + beta * X + gamma) *

235 (b_poly + beta * k1 * X + gamma) *

236 (c_poly + beta * k2 * X + gamma)) / v_H

237

238 # Term 3: Permutation constraints (part 2)

239 z_poly_shifted = R(z_poly(g * X)) # z(X)

240 term3 = -alpha * ((a_poly + beta * S_sigma1 + gamma) *

241 (b_poly + beta * S_sigma2 + gamma) *

242 (c_poly + beta * S_sigma3 + gamma) *

243 z_poly_shifted) / v_H

244

245 # Term 4: Copy constraints (first Lagrange basis condition)

246 L1 = R((X**n - 1) / (n * (X - 1)))

247 term4 = R(alpha**2 * (z_poly - 1) * L1 / v_H)

248

249 # Combine all terms

250 t_poly = R(term1 + term2 + term3 + term4)

251

252 return t_poly

253

254 def _split_quotient_polynomial(self, t_poly, n, X, R, Fq):

255 # Get coefficients of t_poly

256 t_coeffs = t_poly.list()

257 t_coeffs.extend([Fq(0)] * (3 * n - len(t_coeffs))) # Pad to ensure 3n coefficients

258

259 # Split into three parts

260 t_lo_coeffs = t_coeffs[:n]

261 t_mid_coeffs = t_coeffs[n:2*n]

262 t_hi_coeffs = t_coeffs[2*n:]

263

264 # Add random blinding factors for zero-knowledge

265 b10, b11 = Fq.random_element(), Fq.random_element()

266

267 # Create the polynomials with blinding

268 t_lo = R(t_lo_coeffs) + b10 * X**n

269 t_mid = R(t_mid_coeffs) - b10 + b11 * X**n

270 t_hi = R(t_hi_coeffs) - b11

271

272 # Verify that t(X) = t_lo + Xˆn * t_mid + Xˆ(2n) * t_hi

273 assert t_poly == t_lo + X**n * t_mid + X**(2*n) * t_hi, "t(X) does not equal the sum of its parts"

274

275 return t_lo, t_mid, t_hi

276

277 def _compute_linearization_polynomial(self, a_zeta, b_zeta, c_zeta,

278 s_sigma1_zeta, s_sigma2_zeta, z_omega_zeta,

279 qM, qL, qR, qO, qC, S_sigma3,

280 z_poly, t_lo, t_mid, t_hi, alpha, beta, gamma, zeta, PI, n, k1, k2, R):

281 # Compute z_H() = ˆn - 1
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282 z_H_zeta = zeta**n - 1

283

284 # Compute L1()

285 L1_zeta = R((z_H_zeta) / (n * (zeta - 1)))

286

287 # Evaluate PI()

288 PI_zeta = PI(zeta)

289

290 # Compute the individual terms

291 # Gate constraints

292 term1 = a_zeta * b_zeta * qM + a_zeta * qL + b_zeta * qR + c_zeta * qO + PI_zeta + qC

293

294 # Permutation constraints (part 1)

295 term2 = alpha * ((a_zeta + beta * zeta + gamma) *

296 (b_zeta + beta * k1 * zeta + gamma) *

297 (c_zeta + beta * k2 * zeta + gamma) * z_poly)

298

299 # Permutation constraints (part 2)

300 term3 = -alpha * ((a_zeta + beta * s_sigma1_zeta + gamma) *

301 (b_zeta + beta * s_sigma2_zeta + gamma) *

302 (c_zeta + beta * S_sigma3 + gamma) * z_omega_zeta)

303

304 # Copy constraints

305 term4 = alpha**2 * (z_poly - 1) * L1_zeta

306

307 # Compute the final linearization polynomial

308 # Subtract the quotient polynomial terms

309 r_poly = term1 + term2 + term3 + term4 - z_H_zeta * (

310 t_lo + zeta**n * t_mid + zeta**(2*n) * t_hi

311 )

312

313 return r_poly

Code 8: Plonk prover

1 from kzg import KZG

2 from transcript import Transcript

3 from plonk.encoder import Encoder

4

5 class Verifier:

6

7 def __init__(self, curve_type="bn254"):

8 self.kzg = KZG(curve_type=curve_type)

9

10 def verify(self, ivk, x, proof):

11 # Extract data from verification key

12 rk = ivk["rk"]

13 commitments = ivk["commitments"]

14 n = ivk["subgroups"]["n"]

15 g = ivk["subgroups"]["g"]

16 k1 = ivk["subgroups"]["k1"]
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17 k2 = ivk["subgroups"]["k2"]

18

19 # Extract proof components

20 wire_commitments = [

21 proof["commitments"]["a"],

22 proof["commitments"]["b"],

23 proof["commitments"]["c"]

24 ]

25 z_comm = proof["commitments"]["z"]

26 quotient_commitments = [

27 proof["commitments"]["t_lo"],

28 proof["commitments"]["t_mid"],

29 proof["commitments"]["t_hi"]

30 ]

31 W_z = proof["kzg_proofs"]["W_z"]

32 W_zw = proof["kzg_proofs"]["W_zw"]

33

34 # Extract evaluations

35 a_zeta = proof["evaluations"]["a"]

36 b_zeta = proof["evaluations"]["b"]

37 c_zeta = proof["evaluations"]["c"]

38 s_sigma1_zeta = proof["evaluations"]["s_sigma1"]

39 s_sigma2_zeta = proof["evaluations"]["s_sigma2"]

40 z_omega_zeta = proof["evaluations"]["z_omega"]

41

42 # Extract selector and permutation commitments

43 qM_comm = commitments["qM"]

44 qL_comm = commitments["qL"]

45 qR_comm = commitments["qR"]

46 qO_comm = commitments["qO"]

47 qC_comm = commitments["qC"]

48 s_sigma1_comm = commitments["S_sigma1"]

49 s_sigma2_comm = commitments["S_sigma2"]

50 s_sigma3_comm = commitments["S_sigma3"]

51

52 # Set up field

53 Fq = self.kzg.Fq

54

55 # Create encoder for public input polynomial

56 self.encoder = Encoder(self.kzg.curve_order)

57 empty_perm = [0] * (3 * n)

58 empty_selectors = [Fq(0)] * n

59 self.encoder.update_state(empty_selectors, empty_selectors, empty_selectors, empty_selectors, empty_selectors, empty_perm)

60

61 # Compute public input polynomial

62 PI = self.encoder.compute_public_input_poly(x)

63

64 # Create a transcript for the Fiat-Shamir transform

65 transcript = Transcript("plonk-proof", Fq)

66
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67 # Add public inputs to the transcript

68 transcript.append_message("public-inputs", x)

69

70 # Recreate the transcript to recover the same challenges as the prover

71 transcript.append_message("round1-commitments", wire_commitments)

72

73 # Get permutation challenges

74 beta = transcript.get_challenge("beta")

75 gamma = transcript.get_challenge("gamma")

76

77 # Add permutation commitment

78 transcript.append_message("round2-commitment", z_comm)

79

80 # Get quotient challenge

81 alpha = transcript.get_challenge("alpha")

82

83 # Add quotient commitments

84 transcript.append_message("round3-commitments", quotient_commitments)

85

86 # Get evaluation challenge

87 zeta = transcript.get_challenge("zeta")

88

89 # Add evaluations

90 evaluations = [a_zeta, b_zeta, c_zeta, s_sigma1_zeta, s_sigma2_zeta, z_omega_zeta]

91 transcript.append_message("round4-evaluations", evaluations)

92

93 # Get opening challenge

94 v = transcript.get_challenge("v")

95

96 # Get multipoint evaluation challenge (for batch verification)

97 u = transcript.get_challenge("u")

98

99 # Calculate ZH(zeta) = zetaˆn - 1

100 ZH_zeta = zeta**n - 1

101

102 # Calculate L1(zeta) = (zetaˆn - 1)/(n*(zeta - 1))

103 L1_zeta = (zeta**n - 1)/(n * (zeta - 1))

104

105 # Calculate PI(zeta) - public input polynomial evaluation

106 PI_zeta = PI(zeta)

107

108 # Compute linearization polynomial r(X) commitment

109 # First term: a_zeta * b_zeta * qM(X) + a_zeta * qL(X) + b_zeta * qR(X) + c_zeta * qO(X) + PI(zeta) + qC(X)

110 r_comm = self.kzg.multiply(qM_comm, int(a_zeta * b_zeta))

111 r_comm = self.kzg.add(r_comm, self.kzg.multiply(qL_comm, int(a_zeta)))

112 r_comm = self.kzg.add(r_comm, self.kzg.multiply(qR_comm, int(b_zeta)))

113 r_comm = self.kzg.add(r_comm, self.kzg.multiply(qO_comm, int(c_zeta)))

114 r_comm = self.kzg.add(r_comm, self.kzg.multiply(self.kzg.G1, int(PI_zeta)))

115 r_comm = self.kzg.add(r_comm, qC_comm)

116
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117 # Permutation constraint terms ( term)

118 # Step 1: Compute (a_zeta + z + )(b_zeta + k1z + )(c_zeta + k2z + )z(X)

119 a_term_1 = a_zeta + beta * zeta + gamma

120 b_term_1 = b_zeta + beta * k1 * zeta + gamma

121 c_term_1 = c_zeta + beta * k2 * zeta + gamma

122 factor_1 = a_term_1 * b_term_1 * c_term_1

123 term_1 = self.kzg.multiply(z_comm, int(factor_1))

124

125 # Step 2: Compute (c_zeta + S_3(X) + )

126 c_poly_term = self.kzg.multiply(s_sigma3_comm, int(beta)) # S_3(X)

127 c_poly_term = self.kzg.add(c_poly_term, self.kzg.multiply(self.kzg.G1, int(c_zeta + gamma))) # c_zeta + S_3(X) +

128

129 # Step 3: Compute (a_zeta + s_1_zeta + )(b_zeta + s_2_zeta + )(c_zeta + S_3(X) + )z__zeta

130 a_term_2 = a_zeta + beta * s_sigma1_zeta + gamma

131 b_term_2 = b_zeta + beta * s_sigma2_zeta + gamma

132 factor_2 = a_term_2 * b_term_2 * z_omega_zeta

133 term_2 = self.kzg.multiply(c_poly_term, int(factor_2))

134

135 # Step 4: Compute term_1 - term_2

136 perm_diff = self.kzg.add(term_1, self.kzg.neg(term_2))

137

138 # Step 5: Multiply by

139 perm_term = self.kzg.multiply(perm_diff, int(alpha))

140

141 # Add permutation term to r_comm

142 r_comm = self.kzg.add(r_comm, perm_term)

143

144 # Add copy constraint term: *[(z(X) - 1)*L1(zeta)]

145 factor3 = alpha**2 * L1_zeta

146 z_minus_1 = self.kzg.add(z_comm, self.kzg.neg(self.kzg.G1))

147 r_comm = self.kzg.add(r_comm, self.kzg.multiply(z_minus_1, int(factor3)))

148

149 # Subtract quotient polynomial terms: -ZH(zeta)*(t_lo(X) + zetaˆn*t_mid(X) + zetaˆ(2n)*t_hi(X))

150 t_combined = self.kzg.add(proof["commitments"]["t_lo"],

151 self.kzg.multiply(proof["commitments"]["t_mid"], int(zeta**n)))

152 t_combined = self.kzg.add(t_combined,

153 self.kzg.multiply(proof["commitments"]["t_hi"], int(zeta**(2*n))))

154 r_comm = self.kzg.add(r_comm, self.kzg.neg(self.kzg.multiply(t_combined, int(ZH_zeta))))

155

156 # Prepare polynomials and evaluations for verification

157 # First batch: Polynomials evaluated at zeta

158 zeta_commitments = [

159 r_comm, # r(X) (linearization polynomial)

160 wire_commitments[0], # a(X)

161 wire_commitments[1], # b(X)

162 wire_commitments[2], # c(X)

163 s_sigma1_comm, # S_sigma1(X)

164 s_sigma2_comm # S_sigma2(X)

165 ]

166
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167 # Evaluations at zeta

168 zeta_evaluations = [

169 Fq(0), # r(zeta) = 0

170 a_zeta, # a(zeta)

171 b_zeta, # b(zeta)

172 c_zeta, # c(zeta)

173 s_sigma1_zeta, # S_sigma1(zeta)

174 s_sigma2_zeta # S_sigma2(zeta)

175 ]

176

177 # Second batch: Polynomial z(X) evaluated at zeta * g

178 zw_commitments = [z_comm]

179 zw_evaluations = [z_omega_zeta]

180

181 # Verify batch opening proofs

182 commitment_list = [zeta_commitments, zw_commitments]

183 z_values = [zeta, zeta * g]

184 evaluations_list = [zeta_evaluations, zw_evaluations]

185 proof_list = [W_z, W_zw]

186 xi_values = [v] * 2

187 batch_result = self.kzg.batch_check(rk, commitment_list, z_values, evaluations_list, proof_list, xi_values, u)

188

189 return batch_result

Code 9: Plonk verifier
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