KZG Polynomial Commitment Scheme on zk-SNARKs Construction and Its Implementation

Mohammad Ferry Husnil Arif

Faculty of Computer Science Universitas Indonesia mohammad.ferry@ui.ac.id

Final Project Defense June 2025

Outline

- 1 Introduction and Motivation
- 2 Evolution to Practical Systems
- 3 Technical Foundation
- **4** KZG Polynomial Commitment
- Main zk-SNARKs Protocol
- **6** Conclusion

Definition

A cryptographic protocol where a prover convinces a verifier of a statement's truth **without revealing any additional information**

Definition

A cryptographic protocol where a prover convinces a verifier of a statement's truth **without revealing any additional information**

Three Fundamental Properties:

Completeness: Valid proofs always accepted

Definition

A cryptographic protocol where a prover convinces a verifier of a statement's truth **without revealing any additional information**

Three Fundamental Properties:

- Completeness: Valid proofs always accepted
- Soundness: Invalid proofs always rejected

Definition

A cryptographic protocol where a prover convinces a verifier of a statement's truth **without revealing any additional information**

Three Fundamental Properties:

- Completeness: Valid proofs always accepted
- Soundness: Invalid proofs always rejected
- Zero-Knowledge: Nothing revealed beyond truth

Definition

A cryptographic protocol where a prover convinces a verifier of a statement's truth **without revealing any additional information**

Applications:

 Privacy-preserving cryptocurrencies (Zcash)

Three Fundamental Properties:

- Completeness: Valid proofs always accepted
- Soundness: Invalid proofs always rejected
- Zero-Knowledge: Nothing revealed beyond truth

Definition

A cryptographic protocol where a prover convinces a verifier of a statement's truth **without revealing any additional information**

Three Fundamental Properties:

- Completeness: Valid proofs always accepted
- Soundness: Invalid proofs always rejected
- Zero-Knowledge: Nothing revealed beyond truth

Applications:

- Privacy-preserving cryptocurrencies (Zcash)
- Secure healthcare data management

Definition

A cryptographic protocol where a prover convinces a verifier of a statement's truth **without revealing any additional information**

Three Fundamental Properties:

- Completeness: Valid proofs always accepted
- Soundness: Invalid proofs always rejected
- Zero-Knowledge: Nothing revealed beyond truth

Applications:

- Privacy-preserving cryptocurrencies (Zcash)
- Secure healthcare data management
- Confidential financial auditing

Definition

A cryptographic protocol where a prover convinces a verifier of a statement's truth **without revealing any additional information**

Three Fundamental Properties:

- Completeness: Valid proofs always accepted
- Soundness: Invalid proofs always rejected
- Zero-Knowledge: Nothing revealed beyond truth

Applications:

- Privacy-preserving cryptocurrencies (Zcash)
- Secure healthcare data management
- Confidential financial auditing
- Legal verification frameworks

The Problem:

Alice knows a password x

Alice

The Problem:

- Alice knows a password x
- Bob knows the hash h = SHA256(x)

The Problem:

- Alice knows a password x
- Bob knows the hash h = SHA256(x)
- Alice wants to prove she knows x without revealing it

The Problem:

- Alice knows a password x
- Bob knows the hash h = SHA256(x)
- Alice wants to prove she knows x without revealing it

Without Zero-Knowledge:

X Alice sends x to Bob

The Problem:

- Alice knows a password x
- Bob knows the hash h = SHA256(x)
- Alice wants to prove she knows x without revealing it

Without Zero-Knowledge:

- X Alice sends x to Bob
- X Bob learns the password!

The Problem:

- Alice knows a password x
- Bob knows the hash h = SHA256(x)
- Alice wants to prove she knows x without revealing it

Without Zero-Knowledge:

- X Alice sends x to Bob
- X Bob learns the password!

With Zero-Knowledge:

✓ Alice proves knowledge of x

The Problem:

- Alice knows a password x
- Bob knows the hash h = SHA256(x)
- Alice wants to prove she knows x without revealing it

Without Zero-Knowledge:

- X Alice sends x to Bob
- Bob learns the password!

With Zero-Knowledge:

- ✓ Alice proves knowledge of x
- ✓ Bob learns nothing about x

High-level overviews

Lack mathematical rigor

High-level overviews

Lack mathematical rigor

Research papers

Dense notation

Assumed expertise

High-level overviews

Lack mathematical rigor

? ?

Research papers

Dense notation
Assumed expertise

Accessible exposition + Concrete examples + Working implementations

Accessible exposition + Concrete examples + Working implementations

Why this matters: Growing importance in blockchain, privacy technologies, and secure computation

1 Make advanced cryptography accessible to undergraduate students

- **1** Make advanced cryptography accessible to undergraduate students
- Provide complete mathematical exposition with concrete examples

- Make advanced cryptography accessible to undergraduate students
- Provide complete mathematical exposition with concrete examples
- 3 Deliver working SageMath implementations for hands-on learning

- Make advanced cryptography accessible to undergraduate students
- Provide complete mathematical exposition with concrete examples
- Oeliver working SageMath implementations for hands-on learning
- Bridge theory to practice in cryptographic education

- Make advanced cryptography accessible to undergraduate students
- Provide complete mathematical exposition with concrete examples
- Oeliver working SageMath implementations for hands-on learning
- 4 Bridge theory to practice in cryptographic education

Core Focus

KZG polynomial commitment scheme and its application in two prominent zk-SNARKs protocols: Marlin and Plonk

What makes zk-SNARKs special:

• Succinct: Proofs are tiny (few hundred bytes)

What makes zk-SNARKs special:

- **S**uccinct: Proofs are tiny (few hundred bytes)
- Non-interactive: No back-and-forth communication needed

What makes zk-SNARKs special:

- **S**uccinct: Proofs are tiny (few hundred bytes)
- Non-interactive: No back-and-forth communication needed
- ARgument of Knowledge: Prover must know the witness

The zk-SNARKs Ecosystem

Framework	Frontend	Language	Proof System
Arkworks	Self-contained	Rust	Groth16, Marlin, GM17, Plonk
Gnark	Self-contained	Go	Groth16, Plonk (KZG, FRI)
Hyrax	None	Python	Hyrax
LÉGOSnark	None	C++	Brakedown-like
LibSNARK	xJsnark	Java, C++	Groth16, Pinocchio, GGPR
Zokrates	Self-contained	Zokrates DSL	Groth16, GM17, Marlin, Nova
Mirage	None	Java	Pinocchio-like
PySNARK	Self-contained	Python	Groth16
SnarkJS	Circom	JavaScript, Circom DSL	Groth16, Plonk (via WASM)
Rapidsnark	Circom	JavaScript, Circom DSL	Groth16
Spartan	None	Rust	Spartan
Aurora (libiop)	None	C++	Aurora
Fractal (libiop)	None	C++	Fractal
Virgo	None	Python	Virgo
Noir	Self-contained	Rust (Noir DSL)	Any ACIR-compatible system
Dusk-PLONK	None	Rust	PLÓNK
Halo2	None (Rust API)	Rust	PLONK-like

The zk-SNARKs Ecosystem

Framework	Frontend	Language	Proof System
Arkworks	Self-contained	Rust	Groth16, Marlin, GM17, Plonk
Gnark	Self-contained	Go	Groth16, Plonk (KZG, FRI)
Hyrax	None	Python	Hyrax
LÉGOSnark	None	C++	Brakedown-like
LibSNARK	xJsnark	Java, C++	Groth16, Pinocchio, GGPR
Zokrates	Self-contained	Zokrates DSL	Groth16, GM17, Marlin, Nova
Mirage	None	Java	Pinocchio-like
PySNARK	Self-contained	Python	Groth16
SnarkJS	Circom	JavaScript, Circom DSL	Groth16, Plonk (via WASM)
Rapidsnark	Circom	lavaScript, Circom DSL	Groth16
Spartan	None	Rust	Spartan
Aurora (libiop)	None	C++	Aurora
Fractal (libiop)	None	C++	Fractal
Virgo	None	Python	Virgo
Noir	Self-contained	Rust (Noir DSL)	Any ACIR-compatible system
Dusk-PLONK	None	Rust	PLONK
Halo2	None (Rust API)	Rust	PLONK-like

Adapted from "Zero-Knowledge Proof Frameworks: A Survey" by Sheybani et al. (2025)

Performance Comparison

Protocol	Proof Size	Prover	Verifier	Setup
Groth16 Marlin	$2\mathbb{G}_1 + 1\mathbb{G}_2$ $8\mathbb{F}_q + 13\mathbb{G}_1$	$O(n \log n)$ $O(n \log n)$	$O(x)$ $O(x + \log n)$	Circuit-specific Universal
Plonk	$6\mathbb{F}_q + 9\mathbb{G}_1$	$O(n \log n)$	$O(\mathbf{x} + \log n)$	Universal

Performance Comparison

Protocol	Proof Size	Prover	Verifier	Setup
Groth16	$2\mathbb{G}_1 + 1\mathbb{G}_2$	$O(n \log n)$	$O(\mathbb{x})$	Circuit-specific
Marlin	$8\mathbb{F}_q$ + $13\mathbb{G}_1$	$O(n \log n)$	$O(\mathbf{x} + \log n)$	Universal
Plonk	$6\mathbb{F}_q+9\mathbb{G}_1$	$O(n \log n)$	$O(x + \log n)$	Universal

Typical element sizes:

- \mathbb{F}_q element: 32 bytes
- G₁ element: 32 bytes (compressed)
- G₂ element: 64 bytes (compressed)

Performance Comparison

Protocol	Proof Size	Prover	Verifier	Setup
Groth16	$2\mathbb{G}_1 + 1\mathbb{G}_2$	$O(n \log n)$	$O(\mathbb{x})$	Circuit-specific
Marlin	$8\mathbb{F}_q$ + $13\mathbb{G}_1$	$O(n \log n)$	$O(\mathbf{x} + \log n)$	Universal
Plonk	$6\mathbb{F}_q+9\mathbb{G}_1$	$O(n \log n)$	$O(x + \log n)$	Universal

Typical element sizes:

- \mathbb{F}_a element: 32 bytes
- \mathbb{G}_1 element: 32 bytes (compressed)
- G₂ element: 64 bytes (compressed)

Key Insight

Trade small efficiency loss for huge flexibility gain!

Groth16

Circuit-specific setup

Groth16

Circuit-specific setup

Marlin/Plonk

Universal setup

Groth16

Circuit-specific setup

Marlin/Plonk Universal setup

Setup 1

Setup 2

Setup 3

Groth16

Circuit-specific setup

Setup 1 Setup 2 Setup 3

Marlin/Plonk Universal setup

One Setup

Groth16 Circuit-specific setup

Setup 1 Setup 2 Setup 3

Circuit 1 Circuit 2 Circuit 3

Marlin/Plonk Universal setup

One Setup

Groth16 Circuit-specific setup

Setup 1 Setup 2 Setup 3

Circuit 1 Circuit 2 Circuit 3

Marlin/Plonk Universal setup

Key Advantage

Enabled by: KZG polynomial commitment scheme with updatable SRS!

Three Essential Algebraic Structures

Three Essential Algebraic Structures

1 Finite Fields

Three Essential Algebraic Structures

- **1** Finite Fields
- 2 Elliptic Curves

Three Essential Algebraic Structures

- **1** Finite Fields
- 2 Elliptic Curves
- **3** Bilinear Pairings

Three Essential Algebraic Structures

- **1** Finite Fields
- **2** Elliptic Curves
- **3** Bilinear Pairings

Building blocks for modern cryptography

Definition

A field $(F,+,\cdot)$ is a commutative ring with unity where every non-zero element has a multiplicative inverse

Definition

A field $(F, +, \cdot)$ is a commutative ring with unity where every non-zero element has a multiplicative inverse

Theorem

For any prime q, the integers modulo q with operations + and \cdot form a finite field, denoted \mathbb{F}_q

Definition

A field $(F, +, \cdot)$ is a commutative ring with unity where every non-zero element has a multiplicative inverse

Theorem

For any prime q, the integers modulo q with operations + and \cdot form a finite field, denoted \mathbb{F}_q

Example in $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$:

• Addition: $5 + 4 = 9 \equiv 2 \pmod{7}$

Definition

A field $(F, +, \cdot)$ is a commutative ring with unity where every non-zero element has a multiplicative inverse

Theorem

For any prime q, the integers modulo q with operations + and \cdot form a finite field, denoted \mathbb{F}_q

Example in $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$:

- Addition: $5 + 4 = 9 \equiv 2 \pmod{7}$
- Multiplication: $3 \cdot 5 = 15 \equiv 1 \pmod{7}$

Definition

A field $(F, +, \cdot)$ is a commutative ring with unity where every non-zero element has a multiplicative inverse

Theorem

For any prime q, the integers modulo q with operations + and \cdot form a finite field, denoted \mathbb{F}_q

Example in $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$:

- Addition: $5 + 4 = 9 \equiv 2 \pmod{7}$
- Multiplication: $3 \cdot 5 = 15 \equiv 1 \pmod{7}$
- Inverse: $3^{-1} = 5$ since $3 \cdot 5 \equiv 1 \pmod{7}$

Definition

A field $(F, +, \cdot)$ is a commutative ring with unity where every non-zero element has a multiplicative inverse

Theorem

For any prime q, the integers modulo q with operations + and \cdot form a finite field, denoted \mathbb{F}_q

Example in $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$:

- Addition: $5 + 4 = 9 \equiv 2 \pmod{7}$
- Multiplication: $3 \cdot 5 = 15 \equiv 1 \pmod{7}$
- Inverse: $3^{-1} = 5$ since $3 \cdot 5 \equiv 1 \pmod{7}$

In cryptography: $q \approx 2^{256}$ for security

Definition

An elliptic curve over \mathbb{F}_q is the set of points (x, y) satisfying:

$$y^2 = x^3 + ax + b$$

plus a point at infinity \mathcal{O}

Definition

An elliptic curve over \mathbb{F}_q is the set of points (x, y) satisfying:

$$y^2 = x^3 + ax + b$$

plus a point at infinity \mathcal{O}

Group structure:

Points form an abelian group

Definition

An elliptic curve over \mathbb{F}_q is the set of points (x, y) satisfying:

$$y^2 = x^3 + ax + b$$

plus a point at infinity \mathcal{O}

Group structure:

- Points form an abelian group
- Identity: O

Definition

An elliptic curve over \mathbb{F}_q is the set of points (x, y) satisfying:

$$y^2 = x^3 + ax + b$$

plus a point at infinity \mathcal{O}

Group structure:

- Points form an abelian group
- Identity: O

Definition

An elliptic curve over \mathbb{F}_q is the set of points (x, y) satisfying:

$$y^2 = x^3 + ax + b$$

plus a point at infinity \mathcal{O}

Group structure:

- Points form an abelian group
- Identity: O

Definition

An elliptic curve over \mathbb{F}_q is the set of points (x, y) satisfying:

$$y^2 = x^3 + ax + b$$

plus a point at infinity \mathcal{O}

Group structure:

- Points form an abelian group
- Identity: O

Definition

An elliptic curve over \mathbb{F}_q is the set of points (x, y) satisfying:

$$y^2 = x^3 + ax + b$$

plus a point at infinity \mathcal{O}

Group structure:

- Points form an abelian group
- Identity: O

Definition

A bilinear pairing is a map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ where:

Definition

A bilinear pairing is a map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ where:

• $\mathbb{G}_1, \mathbb{G}_2$: cyclic groups of prime order q (usually elliptic curve groups)

Definition

A bilinear pairing is a map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ where:

- $\mathbb{G}_1, \mathbb{G}_2$: cyclic groups of prime order q (usually elliptic curve groups)
- $\mathbb{G}_{\mathcal{T}}$: cyclic group of order q (usually in $\mathbb{F}_{q^k}^*$)

Definition

A bilinear pairing is a map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ where:

- $\mathbb{G}_1, \mathbb{G}_2$: cyclic groups of prime order q (usually elliptic curve groups)
- $\mathbb{G}_{\mathcal{T}}$: cyclic group of order q (usually in $\mathbb{F}_{q^k}^*$)

Bilinearity property:

$$e(aP,bQ)=e(P,Q)^{ab}$$
 for all $a,b\in\mathbb{F}_q$

Definition

A bilinear pairing is a map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ where:

- $\mathbb{G}_1, \mathbb{G}_2$: cyclic groups of prime order q (usually elliptic curve groups)
- $\mathbb{G}_{\mathcal{T}}$: cyclic group of order q (usually in $\mathbb{F}_{q^k}^*$)

Bilinearity property:

$$e(aP,bQ)=e(P,Q)^{ab}$$
 for all $a,b\in\mathbb{F}_q$

Properties:

• Non-degenerate: $e(P, Q) \neq 1$ for generators P, Q

Definition

A bilinear pairing is a map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ where:

- $\mathbb{G}_1, \mathbb{G}_2$: cyclic groups of prime order q (usually elliptic curve groups)
- $\mathbb{G}_{\mathcal{T}}$: cyclic group of order q (usually in $\mathbb{F}_{q^k}^*$)

Bilinearity property:

$$e(aP,bQ)=e(P,Q)^{ab}$$
 for all $a,b\in\mathbb{F}_q$

Properties:

- Non-degenerate: $e(P,Q) \neq 1$ for generators P,Q
- Efficiently computable

Definition

A bilinear pairing is a map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ where:

- $\mathbb{G}_1, \mathbb{G}_2$: cyclic groups of prime order q (usually elliptic curve groups)
- $\mathbb{G}_{\mathcal{T}}$: cyclic group of order q (usually in $\mathbb{F}_{q^k}^*$)

Bilinearity property:

$$e(aP,bQ)=e(P,Q)^{ab}$$
 for all $a,b\in\mathbb{F}_q$

Properties:

- Non-degenerate: $e(P, Q) \neq 1$ for generators P, Q
- Efficiently computable
- Examples: Weil pairing, Tate pairing

zk-SNARKs Architecture

(1)

A functional commitment scheme (cryptographic object)

zk-SNARKs Architecture

(1) A functional commitment scheme (cryptographic object)

(2) A compatible interactive proof (info. theoretic object)

zk-SNARKs Architecture

zk-SNARKs Architecture

zk-SNARKs Architecture

In this work

KZG (same for both) + Different interactive proofs (Marlin vs Plonk)

The Computation Pipeline

The Computation Pipeline

Polynomial through points

Polynomial through points

Unique Interpolation

• n points uniquely determine degree n-1 polynomial

Polynomial through points

Unique Interpolation

- n points uniquely determine degree n-1 polynomial
- Can encode *n* values as single object

Polynomial through points

Unique Interpolation

- n points uniquely determine degree n-1 polynomial
- Can encode n values as single object
- Efficient algorithms (FFT) with O(n log n)

Lemma

Let \mathbb{F}_q be a finite field and $f \in \mathbb{F}_q[X_1, X_2, \dots, X_n]$ be a non-zero polynomial of total degree at most d. Then

$$\Pr[f(r) = 0 \mid r \leftarrow \$ \mathbb{F}_q^n] \le \frac{d}{|\mathbb{F}_q|}$$

Lemma

Let \mathbb{F}_q be a finite field and $f \in \mathbb{F}_q[X_1, X_2, \dots, X_n]$ be a non-zero polynomial of total degree at most d. Then

$$\Pr[f(r) = 0 \mid r \leftarrow \$ \mathbb{F}_q^n] \le \frac{d}{|\mathbb{F}_q|}$$

Example: Consider $f(x, y) = x^3 + xy^2 - 2y^3 - 2x + y$ in $\mathbb{F}_7[x, y]$

Total degree: d = 3

Lemma

Let \mathbb{F}_q be a finite field and $f \in \mathbb{F}_q[X_1, X_2, \dots, X_n]$ be a non-zero polynomial of total degree at most d. Then

$$\Pr[f(r) = 0 \mid r \leftarrow \$ \mathbb{F}_q^n] \le \frac{d}{|\mathbb{F}_q|}$$

Example: Consider $f(x, y) = x^3 + xy^2 - 2y^3 - 2x + y$ in $\mathbb{F}_7[x, y]$

Total degree: d = 3

Roots in \mathbb{F}_7^2 : (0,0), (0,2), (0,5), (2,6), (3,0), (4,0), (5,1)

Lemma

Let \mathbb{F}_q be a finite field and $f \in \mathbb{F}_q[X_1, X_2, \dots, X_n]$ be a non-zero polynomial of total degree at most d. Then

$$\Pr[f(r) = 0 \mid r \leftarrow \$ \mathbb{F}_q^n] \le \frac{d}{|\mathbb{F}_q|}$$

Example: Consider $f(x, y) = x^3 + xy^2 - 2y^3 - 2x + y$ in $\mathbb{F}_7[x, y]$

Total degree: d = 3

Roots in \mathbb{F}_7^2 : (0,0), (0,2), (0,5), (2,6), (3,0), (4,0), (5,1)

Probability calculation:

• Total points in \mathbb{F}_7^2 : $7^2 = 49$

Lemma

Let \mathbb{F}_q be a finite field and $f \in \mathbb{F}_q[X_1, X_2, \dots, X_n]$ be a non-zero polynomial of total degree at most d. Then

$$\Pr[f(r) = 0 \mid r \leftarrow \$ \mathbb{F}_q^n] \le \frac{d}{|\mathbb{F}_q|}$$

Example: Consider $f(x, y) = x^3 + xy^2 - 2y^3 - 2x + y$ in $\mathbb{F}_7[x, y]$

Total degree: d = 3

Roots in \mathbb{F}_7^2 : (0,0), (0,2), (0,5), (2,6), (3,0), (4,0), (5,1)

Probability calculation:

- Total points in \mathbb{F}_7^2 : $7^2 = 49$
- Number of roots: 7

Lemma

Let \mathbb{F}_q be a finite field and $f \in \mathbb{F}_q[X_1, X_2, \dots, X_n]$ be a non-zero polynomial of total degree at most d. Then

$$\Pr[f(r) = 0 \mid r \leftarrow \$ \mathbb{F}_q^n] \le \frac{d}{|\mathbb{F}_q|}$$

Example: Consider $f(x, y) = x^3 + xy^2 - 2y^3 - 2x + y$ in $\mathbb{F}_7[x, y]$

Total degree: d = 3

Roots in \mathbb{F}_7^2 : (0,0), (0,2), (0,5), (2,6), (3,0), (4,0), (5,1)

Probability calculation:

- Total points in \mathbb{F}_7^2 : $7^2 = 49$
- Number of roots: 7
- $\Pr[f(r) = 0] = \frac{7}{49} = \frac{1}{7} \le \frac{3}{7} = \frac{d}{|\mathbb{F}_7|} \checkmark$

Lemma

Let \mathbb{F}_q be a finite field and $f \in \mathbb{F}_q[X_1, X_2, \dots, X_n]$ be a non-zero polynomial of total degree at most d. Then

$$\Pr[f(r) = 0 \mid r \leftarrow \$ \mathbb{F}_q^n] \le \frac{d}{|\mathbb{F}_q|}$$

Example: Consider $f(x, y) = x^3 + xy^2 - 2y^3 - 2x + y$ in $\mathbb{F}_7[x, y]$

Total degree: d = 3

Roots in \mathbb{F}_7^2 : (0,0), (0,2), (0,5), (2,6), (3,0), (4,0), (5,1)

Probability calculation:

- Total points in \mathbb{F}_7^2 : $7^2 = 49$
- Number of roots: 7
- $\Pr[f(r) = 0] = \frac{7}{49} = \frac{1}{7} \le \frac{3}{7} = \frac{d}{|\mathbb{F}_7|} \checkmark$

In practice: $q \approx 2^{256}$, so probability $\leq \frac{d}{2^{256}}$ is negligible!

Security guarantees:

• Binding: Cannot change polynomials after commitment

Security guarantees:

- **Binding**: Cannot change polynomials after commitment
- **Soundness**: Schwartz-Zippel ensures false claims fail with probability $\geq 1 \frac{d}{|\mathbb{F}_q|}$

Interactive Protocol

Interactive Protocol

Interactive Protocol

$\begin{array}{c} P \\ \longleftarrow \\ \longrightarrow \\ \text{Multiple rounds} \end{array}$

Non-Interactive Protocol

Interactive Protocol

Non-Interactive Protocol

Key transformation: Replace verifier's random challenges with hash function

Interactive Protocol

Non-Interactive Protocol

Key transformation: Replace verifier's random challenges with hash function

Result

Single proof string that can be verified by anyone - perfect for blockchain!

Setup Phase (Trusted)

Generate powers of secret x in \mathbb{F}_q :

$$SRS = \{G_1, xG_1, x^2G_1, \dots, x^dG_1, G_2, xG_2\}$$

Secret *x* is destroyed after setup!

Setup Phase (Trusted)

Generate powers of secret x in \mathbb{F}_q :

$$SRS = \{G_1, xG_1, x^2G_1, \dots, x^dG_1, G_2, xG_2\}$$

Secret *x* is destroyed after setup!

Setup Phase (Trusted)

Generate powers of secret x in \mathbb{F}_q :

$$SRS = \{G_1, xG_1, x^2G_1, \dots, x^dG_1, G_2, xG_2\}$$

Secret *x* is destroyed after setup!

Key Operations:

1 Commit: For polynomial $p(X) = \sum a_i X^i$

$$C = p(x)G_1 = \sum a_i(x^iG_1)$$

Setup Phase (Trusted)

Generate powers of secret x in \mathbb{F}_q :

$$SRS = \{G_1, xG_1, x^2G_1, \dots, x^dG_1, G_2, xG_2\}$$

Secret *x* is destroyed after setup!

Key Operations:

1 Commit: For polynomial $p(X) = \sum a_i X^i$

$$C = p(x)G_1 = \sum a_i(x^iG_1)$$

2 Open: Prove p(z) = v by showing (p(X) - v) divisible by (X - z)

Setup Phase (Trusted)

Generate powers of secret x in \mathbb{F}_q :

$$SRS = \{G_1, xG_1, x^2G_1, \dots, x^dG_1, G_2, xG_2\}$$

Secret *x* is destroyed after setup!

Key Operations:

1 Commit: For polynomial $p(X) = \sum a_i X^i$

$$C = p(x)G_1 = \sum a_i(x^iG_1)$$

- **2 Open:** Prove p(z) = v by showing (p(X) v) divisible by (X z)
- 3 Verify: Check using bilinear pairing

Committing to Polynomials

Example:
$$p(X) = 2X^2 + 3X + 5$$

- a_0 5
- a_1 3
- a_2 2

Committing to Polynomials

Example:
$$p(X) = 2X^2 + 3X + 5$$

Using SRS powers:

$$C = p(x)G_1$$

= $(2x^2 + 3x + 5)G_1$
= $2(x^2G_1) + 3(xG_1) + 5G_1$

$$G_1$$

$$a_1$$
 3

 a_2

$$xG_1$$

$$x^2G_1$$

Committing to Polynomials

Example:
$$p(X) = 2X^2 + 3X + 5$$

Using SRS powers:

$$C = p(x)G_1$$

= $(2x^2 + 3x + 5)G_1$
= $2(x^2G_1) + 3(xG_1) + 5G_1$

Committing to Polynomials

Example:
$$p(X) = 2X^2 + 3X + 5$$

Using SRS powers:

$$C = p(x)G_1$$

= $(2x^2 + 3x + 5)G_1$
= $2(x^2G_1) + 3(xG_1) + 5G_1$

Committing to Polynomials

Example:
$$p(X) = 2X^2 + 3X + 5$$

Using SRS powers:

$$C = p(x)G_1$$

= $(2x^2 + 3x + 5)G_1$
= $2(x^2G_1) + 3(xG_1) + 5G_1$

Result: Single group element *C*!

Theorem

For $p \in \mathbb{F}_q[X]$ and $z, v \in \mathbb{F}_q$,

$$p(z) = v \iff (X - z) \text{ divides } (p(X) - v)$$

Theorem

For $p \in \mathbb{F}_q[X]$ and $z, v \in \mathbb{F}_q$,

$$p(z) = v \iff (X - z) \text{ divides } (p(X) - v)$$

Goal: Prove that committed polynomial p satisfies p(z) = v

Theorem

For $p \in \mathbb{F}_q[X]$ and $z, v \in \mathbb{F}_q$,

$$p(z) = v \iff (X - z) \text{ divides } (p(X) - v)$$

Goal: Prove that committed polynomial p satisfies p(z) = v **Protocol:**

1 Compute witness polynomial: $w(X) = \frac{p(X) - v}{X - z}$

Theorem

For $p \in \mathbb{F}_q[X]$ and $z, v \in \mathbb{F}_q$,

$$p(z) = v \iff (X - z) \text{ divides } (p(X) - v)$$

Goal: Prove that committed polynomial p satisfies p(z) = v **Protocol:**

- 1 Compute witness polynomial: $w(X) = \frac{p(X)-v}{X-z}$
- 2 Create proof: $\pi = w(x)G_1$ using SRS

Theorem

For $p \in \mathbb{F}_q[X]$ and $z, v \in \mathbb{F}_q$,

$$p(z) = v \iff (X - z) \text{ divides } (p(X) - v)$$

Goal: Prove that committed polynomial p satisfies p(z) = v **Protocol:**

- 1 Compute witness polynomial: $w(X) = \frac{p(X)-v}{X-z}$
- 2 Create proof: $\pi = w(x)G_1$ using SRS
- 3 Proof size: Just one group element!

Theorem

For $p \in \mathbb{F}_q[X]$ and $z, v \in \mathbb{F}_q$,

$$p(z) = v \iff (X - z) \text{ divides } (p(X) - v)$$

Goal: Prove that committed polynomial p satisfies p(z) = v **Protocol:**

- 1 Compute witness polynomial: $w(X) = \frac{p(X) v}{X z}$
- 2 Create proof: $\pi = w(x)G_1$ using SRS
- 3 Proof size: Just one group element!

Example: If $p(X) = X^2 + 2X + 1$ and claiming p(3) = 16:

$$w(X) = \frac{X^2 + 2X + 1 - 16}{X - 3} = \frac{X^2 + 2X - 15}{X - 3} = X + 5$$

Verification Equation

$$e(C - vG_1, G_2) \stackrel{?}{=} e(\pi, xG_2 - zG_2)$$

Verification Equation

$$e(C - vG_1, G_2) \stackrel{?}{=} e(\pi, xG_2 - zG_2)$$

Why this works:

LHS =
$$e((p(x) - v)G_1, G_2) = e(w(x)(x - z)G_1, G_2) = e(w(x)G_1, (x - z)G_2) = RHS$$

Verification Equation

$$e(C - vG_1, G_2) \stackrel{?}{=} e(\pi, xG_2 - zG_2)$$

Why this works:

LHS =
$$e((p(x) - v)G_1, G_2) = e(w(x)(x - z)G_1, G_2) = e(w(x)G_1, (x - z)G_2) = RHS$$

Verifier efficiency:

• Just 2 pairing operations

Verification Equation

$$e(C - vG_1, G_2) \stackrel{?}{=} e(\pi, xG_2 - zG_2)$$

Why this works:

LHS =
$$e((p(x) - v)G_1, G_2) = e(w(x)(x - z)G_1, G_2) = e(w(x)G_1, (x - z)G_2) = RHS$$

Verifier efficiency:

- Just 2 pairing operations
- Independent of polynomial degree

Verification Equation

$$e(C - vG_1, G_2) \stackrel{?}{=} e(\pi, xG_2 - zG_2)$$

Why this works:

LHS =
$$e((p(x) - v)G_1, G_2) = e(w(x)(x - z)G_1, G_2) = e(w(x)G_1, (x - z)G_2) = RHS$$

Verifier efficiency:

- Just 2 pairing operations
- Independent of polynomial degree
- Constant time verification!

1. Completeness ✓

- 1. Completeness ✓
 - Honest prover always succeeds

1. Completeness ✓

- Honest prover always succeeds
- Straightforward from construction

1. Completeness ✓

- Honest prover always succeeds
- Straightforward from construction
- If p(z) = v, then verification equation holds

1. Completeness ✓

- Honest prover always succeeds
- Straightforward from construction
- If p(z) = v, then verification equation holds

2. Evaluation Binding

 Cannot open to two different values at same point

1. Completeness ✓

- Honest prover always succeeds
- Straightforward from construction
- If p(z) = v, then verification equation holds

2. Evaluation Binding

- Cannot open to two different values at same point
- Based on Strong Diffie-Hellman (SDH) assumption

1. Completeness ✓

- Honest prover always succeeds
- Straightforward from construction
- If p(z) = v, then verification equation holds

2. Evaluation Binding

- Cannot open to two different values at same point
- Based on Strong Diffie-Hellman (SDH) assumption
- Breaking requires solving hard problem

1. Completeness ✓

- Honest prover always succeeds
- Straightforward from construction
- If p(z) = v, then verification equation holds

2. Evaluation Binding

- Cannot open to two different values at same point
- Based on Strong Diffie-Hellman (SDH) assumption
- Breaking requires solving hard problem

Remark

Complete zk-SNARKs actually need a stronger property than evaluation binding: **extractability**. This ensures any valid commitment corresponds to an actual polynomial (as required in the Marlin paper).

Proving Evaluation Binding

Strong Diffie-Hellman (SDH) Assumption

Given $\{G_1, xG_1, x^2G_1, ..., x^dG_1, G_2, xG_2\}$, hard to compute:

$$\left(c, \frac{1}{x+c} G_1\right)$$
 for any $c \in \mathbb{F}_q$

Proof idea: If adversary breaks binding \Rightarrow can break SDH **Suppose** adversary outputs (C, z, v, v', π, π') with $v \neq v'$ **Both proofs verify:**

$$e(C - vG_1, G_2) = e(\pi, xG_2 - zG_2)$$

 $e(C - v'G_1, G_2) = e(\pi', xG_2 - zG_2)$

Subtracting:

$$e((v'-v)G_1, G_2) = e(\pi - \pi', xG_2 - zG_2)$$

If $\pi \neq \pi'$: Can extract $\frac{1}{x-z}G_1 = \frac{\pi - \pi'}{v'-v} \Rightarrow$ Breaks SDH!

Constraint System

Marlin (R1CS)

Constraint equation:

$$Az \circ Bz = Cz$$

Where:

- $A,B,C \in \mathbb{F}_q^{n \times n}$ are constraint matrices
- $z = (x, w) \in \mathbb{F}_q^n$ is the assignment vector
- x are public inputs, w are witness values
- o denotes entry-wise product

Plonk

Gate constraint:

$$\begin{vmatrix} q_L \cdot z_{a_i} + q_R \cdot z_{b_i} + q_O \cdot z_{c_i} \\ + q_M \cdot (z_{a_i} \cdot z_{b_i}) + q_C = 0 \end{vmatrix}$$

Where:

- $q_L, q_R, q_O, q_M, q_C \in \mathbb{F}_q^n$ are selectors
- $z = (x, w) \in \mathbb{F}_q^m$ is wire assignment
- x are public inputs, w are witness values
- $a, b, c \in [m]^n$ are wire indices
- Additional copy constraints via σ

Polynomial Evaluation Problem

Prove knowledge of secret $X \in \mathbb{F}_{23}$ such that:

$$Y = X^3 + 2X + 5$$

where Y = 15 is public and X = 3 is the witness.

Polynomial Evaluation Problem

Prove knowledge of secret $X \in \mathbb{F}_{23}$ such that:

$$Y = X^3 + 2X + 5$$

where Y = 15 is public and X = 3 is the witness.

•
$$w_1 = X = 3$$

Polynomial Evaluation Problem

Prove knowledge of secret $X \in \mathbb{F}_{23}$ such that:

$$Y = X^3 + 2X + 5$$

where Y = 15 is public and X = 3 is the witness.

- $w_1 = X = 3$
- $w_2 = X^2 = 9$

Polynomial Evaluation Problem

Prove knowledge of secret $X \in \mathbb{F}_{23}$ such that:

$$Y = X^3 + 2X + 5$$

where Y = 15 is public and X = 3 is the witness.

- $w_1 = X = 3$
- $w_2 = X^2 = 9$
- $w_3 = X^3 = 4$ (note: 27 mod 23 = 4)

Polynomial Evaluation Problem

Prove knowledge of secret $X \in \mathbb{F}_{23}$ such that:

$$Y = X^3 + 2X + 5$$

where Y = 15 is public and X = 3 is the witness.

- $w_1 = X = 3$
- $w_2 = X^2 = 9$
- $w_3 = X^3 = 4$ (note: 27 mod 23 = 4)
- $w_4 = 2X = 6$

Polynomial Evaluation Problem

Prove knowledge of secret $X \in \mathbb{F}_{23}$ such that:

$$Y = X^3 + 2X + 5$$

where Y = 15 is public and X = 3 is the witness.

- $w_1 = X = 3$
- $w_2 = X^2 = 9$
- $w_3 = X^3 = 4$ (note: 27 mod 23 = 4)
- $w_4 = 2X = 6$
- $w_5 = X^3 + 2X = 10$

Polynomial Evaluation Problem

Prove knowledge of secret $X \in \mathbb{F}_{23}$ such that:

$$Y = X^3 + 2X + 5$$

where Y = 15 is public and X = 3 is the witness.

- $w_1 = X = 3$
- $w_2 = X^2 = 9$
- $w_3 = X^3 = 4$ (note: 27 mod 23 = 4)
- $w_4 = 2X = 6$
- $w_5 = X^3 + 2X = 10$
- $Y = w_5 + 5 = 15 \checkmark$

Polynomial Evaluation Problem

Prove knowledge of secret $X \in \mathbb{F}_{23}$ such that:

$$Y = X^3 + 2X + 5$$

where Y = 15 is public and X = 3 is the witness.

- $w_1 = X = 3$
- $w_2 = X^2 = 9$
- $w_3 = X^3 = 4$ (note: 27 mod 23 = 4)
- $w_4 = 2X = 6$
- $w_5 = X^3 + 2X = 10$
- $Y = w_5 + 5 = 15 \checkmark$

Assignment vector: z = [1, 15, 3, 9, 4, 6]

Assignment vector: z = [1, 15, 3, 9, 4, 6]

• Public inputs: [1, Y]

Assignment vector: z = [1, 15, 3, 9, 4, 6]

- Public inputs: [1, Y]
- Witness values: $[X, X^2, X^3, 2X]$

Assignment vector: z = [1, 15, 3, 9, 4, 6]

- Public inputs: [1, Y]
- Witness values: $[X, X^2, X^3, 2X]$

Constraints:

(computing X^2)

Assignment vector: z = [1, 15, 3, 9, 4, 6]

- Public inputs: [1, Y]
- Witness values: $[X, X^2, X^3, 2X]$

Constraints:

(computing
$$X^2$$
)

(computing X^3)

Marlin R1CS Encoding

Assignment vector: z = [1, 15, 3, 9, 4, 6]

- Public inputs: [1, Y]
- Witness values: $[X, X^2, X^3, 2X]$

$$1 w_1 \cdot w_1 = w_2$$

2
$$w_2 \cdot w_1 = w_3$$

$$3 \cdot w_1 = w_4$$

(computing
$$X^2$$
)

(computing
$$X^3$$
)

(computing
$$2X$$
)

Marlin R1CS Encoding

Assignment vector: z = [1, 15, 3, 9, 4, 6]

- Public inputs: [1, Y]
- Witness values: $[X, X^2, X^3, 2X]$

$$1 w_1 \cdot w_1 = w_2$$

2
$$w_2 \cdot w_1 = w_3$$

$$3 \cdot w_1 = w_4$$

$$(5 + w_3 + w_4) \cdot 1 = Y$$

(computing
$$X^2$$
)

(computing
$$X^3$$
)

(computing
$$2X$$
)

Marlin Constraint Matrices

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Marlin Constraint Matrices

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Marlin Constraint Matrices

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Note: Matrices are 4×6 (4 constraints, 6 variables). In practice, padded with zero rows to form square $n \times n$ matrices for polynomial encoding.

Wire assignment: z = [1, 2, 5, 15, 3, 9, 4, 6, 10]

Wire assignment: z = [1, 2, 5, 15, 3, 9, 4, 6, 10]

• Wires 1-4: public inputs [1, 2, 5, Y]

Wire assignment: z = [1, 2, 5, 15, 3, 9, 4, 6, 10]

- Wires 1-4: public inputs [1, 2, 5, Y]
- Wires 5-9: witness values $[X, X^2, X^3, 2X, X^3 + 2X]$

Wire assignment: z = [1, 2, 5, 15, 3, 9, 4, 6, 10]

- Wires 1-4: public inputs [1, 2, 5, Y]
- Wires 5-9: witness values $[X, X^2, X^3, 2X, X^3 + 2X]$

Constraints:

1-4. Constant gates: $z_1 = 1, z_2 = 2, z_3 = 5, z_4 = 15$

Wire assignment: z = [1, 2, 5, 15, 3, 9, 4, 6, 10]

- Wires 1-4: public inputs [1, 2, 5, Y]
- Wires 5-9: witness values $[X, X^2, X^3, 2X, X^3 + 2X]$

1-4. Constant gates:
$$z_1 = 1, z_2 = 2, z_3 = 5, z_4 = 15$$

5. $z_5 \cdot z_5 = z_6$ (computing X^2)

Wire assignment: z = [1, 2, 5, 15, 3, 9, 4, 6, 10]

- Wires 1-4: public inputs [1, 2, 5, Y]
- Wires 5-9: witness values $[X, X^2, X^3, 2X, X^3 + 2X]$

1-4. Constant gates:
$$z_1 = 1$$
, $z_2 = 2$, $z_3 = 5$, $z_4 = 15$
5. $z_5 \cdot z_5 = z_6$ (computing X^2)
6. $z_6 \cdot z_5 = z_7$ (computing X^3)

Wire assignment: z = [1, 2, 5, 15, 3, 9, 4, 6, 10]

- Wires 1-4: public inputs [1, 2, 5, Y]
- Wires 5-9: witness values $[X, X^2, X^3, 2X, X^3 + 2X]$

1-4. Constant gates:
$$z_1 = 1, z_2 = 2, z_3 = 5, z_4 = 15$$

5. $z_5 \cdot z_5 = z_6$ (computing X^2)
6. $z_6 \cdot z_5 = z_7$ (computing X^3)
7. $z_5 \cdot z_2 = z_8$ (computing $2X$)

Wire assignment: z = [1, 2, 5, 15, 3, 9, 4, 6, 10]

- Wires 1-4: public inputs [1, 2, 5, Y]
- Wires 5-9: witness values $[X, X^2, X^3, 2X, X^3 + 2X]$

1-4. Constant gates:
$$z_1 = 1, z_2 = 2, z_3 = 5, z_4 = 15$$

5. $z_5 \cdot z_5 = z_6$ (computing X^2)
6. $z_6 \cdot z_5 = z_7$ (computing X^3)
7. $z_5 \cdot z_2 = z_8$ (computing Z^3)
8. $z_7 + z_8 = z_9$ (computing $Z^3 + 2Z$)

Wire assignment: z = [1, 2, 5, 15, 3, 9, 4, 6, 10]

- Wires 1-4: public inputs [1, 2, 5, Y]
- Wires 5-9: witness values $[X, X^2, X^3, 2X, X^3 + 2X]$

1-4. Constant gates:
$$z_1 = 1, z_2 = 2, z_3 = 5, z_4 = 15$$
5. $z_5 \cdot z_5 = z_6$ (computing X^2)
6. $z_6 \cdot z_5 = z_7$ (computing X^3)
7. $z_5 \cdot z_2 = z_8$ (computing Z^3)
8. $z_7 + z_8 = z_9$ (computing $Z^3 + 2Z^3$)
9. $z_9 + z_9 = z_9$ (final addition)

Plonk Selector Vectors and Wire Indices

Selector vectors and wire indices:

	G1	G2	G3	G4	G5	G6	G7	G8	G9
q_L	1	1	1	1	0	0	0	1	1
q_R	0	0	0	0	0	0	0	1	1
90	0	0	0	0	-1	-1	-1	-1	-1
q_M	0	0	0	0	1	1	1	0	0
q_C	-1	-2	-5	-15	0	0	0	0	0
а	1	2	3	4	5	6	5	7	9
b	0	0	0	0	5	5	2	8	3
С	0	0	0	0	6	7	8	9	4

Plonk Selector Vectors and Wire Indices

Selector vectors and wire indices:

	G1	G2	G3	G4	G5	G6	G7	G8	G9
q_L	1	1	1	1	0	0	0	1	1
q_R	0	0	0	0	0	0	0	1	1
90	0	0	0	0	-1	-1	-1	-1	-1
q_M	0	0	0	0	1	1	1	0	0
q_C	-1	-2	-5	-15	0	0	0	0	0
а	1	2	3	4	5	6	5	7	9
Ь	0	0	0	0	5	5	2	8	3
С	0	0	0	0	6	7	8	9	4

Copy constraints: Permutation σ ensures wire consistency $\sigma = (1)(2,16)(3,18)(4,27)(5,7,14,15)(6,23)(8,24)(9,26)(10,11,12,13,19,20,21,22)(17,25)$

Marlin

Plonk

Marlin Plonk

Witness polynomials:

• $\hat{w}(X)$ - shifted witness

Marlin Plonk

Witness polynomials:

- $\hat{w}(X)$ shifted witness
- $\hat{z}(X)$ full assignment

Marlin Plonk

Witness polynomials:

- $\hat{w}(X)$ shifted witness
- $\hat{z}(X)$ full assignment
- $\hat{z}_A(X), \hat{z}_B(X), \hat{z}_C(X)$ linear combinations

Marlin

Plonk

Witness polynomials:

- $\hat{w}(X)$ shifted witness
- $\hat{z}(X)$ full assignment
- $\hat{z}_A(X), \hat{z}_B(X), \hat{z}_C(X)$ linear combinations

Matrix polynomials:

• $\hat{row}_{M^*}(X), \hat{rol}_{M^*}(X), \hat{val}_{M^*}(X)$

Marlin

Plonk

Witness polynomials:

- $\hat{w}(X)$ shifted witness
- $\hat{z}(X)$ full assignment
- $\hat{z}_A(X), \hat{z}_B(X), \hat{z}_C(X)$ linear combinations

Matrix polynomials:

- $\hat{row}_{M^*}(X), \hat{rol}_{M^*}(X), \hat{val}_{M^*}(X)$
- For $M \in \{A, B, C\}$

Marlin

Plonk

Witness polynomials:

- $\hat{w}(X)$ shifted witness
- $\hat{z}(X)$ full assignment
- $\hat{z}_A(X), \hat{z}_B(X), \hat{z}_C(X)$ linear combinations

Matrix polynomials:

- $\hat{row}_{M^*}(X), \hat{rol}_{M^*}(X), \hat{val}_{M^*}(X)$
- For $M \in \{A, B, C\}$

Marlin

Witness polynomials:

- $\hat{w}(X)$ shifted witness
- $\hat{z}(X)$ full assignment
- $\hat{z}_A(X), \hat{z}_B(X), \hat{z}_C(X)$ linear combinations

Matrix polynomials:

- $\hat{row}_{M^*}(X), \hat{rol}_{M^*}(X), \hat{val}_{M^*}(X)$
- For $M \in \{A, B, C\}$

Plonk

Wire polynomials:

• a(X), b(X), c(X) - left, right, output

Marlin

Witness polynomials:

- $\hat{w}(X)$ shifted witness
- $\hat{z}(X)$ full assignment
- $\hat{z}_A(X), \hat{z}_B(X), \hat{z}_C(X)$ linear combinations

Matrix polynomials:

- $row_{M^*}(X)$, $\hat{col}_{M^*}(X)$, $\hat{val}_{M^*}(X)$
- For $M \in \{A, B, C\}$

Plonk

Wire polynomials:

• a(X), b(X), c(X) - left, right, output

Selector polynomials:

• $q_L(X), q_R(X), q_O(X)$ - linear

Marlin

Witness polynomials:

- $\hat{w}(X)$ shifted witness
- $\hat{z}(X)$ full assignment
- $\hat{z}_A(X), \hat{z}_B(X), \hat{z}_C(X)$ linear combinations

Matrix polynomials:

- $\hat{row}_{M^*}(X), \hat{rol}_{M^*}(X), \hat{val}_{M^*}(X)$
- For $M \in \{A, B, C\}$

Plonk

Wire polynomials:

• a(X), b(X), c(X) - left, right, output

Selector polynomials:

- $q_L(X), q_R(X), q_O(X)$ linear
- $q_M(X)$ multiplication

Marlin

Witness polynomials:

- $\hat{w}(X)$ shifted witness
- $\hat{z}(X)$ full assignment
- $\hat{z}_A(X), \hat{z}_B(X), \hat{z}_C(X)$ linear combinations

Matrix polynomials:

- $row_{M^*}(X)$, $\hat{col}_{M^*}(X)$, $\hat{val}_{M^*}(X)$
- For $M \in \{A, B, C\}$

Plonk

Wire polynomials:

• a(X), b(X), c(X) - left, right, output

Selector polynomials:

- $q_L(X), q_R(X), q_O(X)$ linear
- $q_M(X)$ multiplication
- $q_C(X)$ constant

Marlin

Witness polynomials:

- $\hat{w}(X)$ shifted witness
- $\hat{z}(X)$ full assignment
- $\hat{z}_A(X), \hat{z}_B(X), \hat{z}_C(X)$ linear combinations

Matrix polynomials:

- $\hat{row}_{M^*}(X), \hat{rol}_{M^*}(X), \hat{val}_{M^*}(X)$
- For $M \in \{A, B, C\}$

Plonk

Wire polynomials:

• a(X), b(X), c(X) - left, right, output

Selector polynomials:

- $q_L(X), q_R(X), q_O(X)$ linear
- $q_M(X)$ multiplication
- $q_C(X)$ constant

Permutation polynomials:

• $S_{\sigma_1}(X), S_{\sigma_2}(X), S_{\sigma_3}(X)$

Polynomial Identity Testing

Marlin

Entry-wise product constraint:

$$\hat{z}_A(X)\hat{z}_B(X) - \hat{z}_C(X) = h_0(X)v_H(X)$$

First sumcheck relation:

$$s(X) + r(\alpha, X) \sum_{M} \eta_{M} \hat{z}_{M}(X)$$
$$- t(X) \hat{z}(X) = h_{1}(X) v_{H}(X) + Xg_{1}(X)$$

Second sumcheck relation:

$$a(X) - b(X)q_2(X) = h_2(X)v_K(X)$$

Plonk

Gate constraint:

$$q_L(X)a(X) + q_R(X)b(X) + q_O(X)c(X) + q_M(X)a(X)b(X) + q_C(X) + (X) = h_0(X)v_H(X)$$

Permutation first:

$$L_1(X)(Z(X)-1)=q_1(X)v_H(X)$$

Permutation second:

$$Z(X)f'(X) - g'(X)Z(X) = q_2(X)v_H(X)$$

Metric	Marlin	Plonk
Constraint System	R1CS	Custom gates
SRS degree	6 <i>m</i>	n
Proof size (\mathbb{F}_q)	8	6
Proof size (\mathbb{G}_1)	13	9
Prover v-MSM operations	11	7
Verifier field operations	$O(\ell + \log m)$	$O(\ell + \log n)$

Metric	Marlin	Plonk
Constraint System	R1CS	Custom gates
SRS degree	6 <i>m</i>	n
Proof size (\mathbb{F}_q)	8	6
Proof size (\mathbb{G}_1)	13	9
Prover v-MSM operations	11	7
Verifier field operations	$O(\ell + \log m)$	$O(\ell + \log n)$

m = sparse matrix domain, n = number of gates, ℓ = public inputs

Metric	Marlin	Plonk
Constraint System	R1CS	Custom gates
SRS degree	6 <i>m</i>	n
Proof size (\mathbb{F}_q)	8	6
Proof size (\mathbb{G}_1)	13	9
Prover v-MSM operations	11	7
Verifier field operations	$O(\ell + \log m)$	$O(\ell + \log n)$

m = sparse matrix domain, n = number of gates, ℓ = public inputs

Choose Marlin when:

Choose Plonk when:

High fan-in addition gates

Metric	Marlin	Plonk
Constraint System	R1CS	Custom gates
SRS degree	6 <i>m</i>	n
Proof size (\mathbb{F}_q)	8	6
Proof size (\mathbb{G}_1)	13	9
Prover v-MSM operations	11	7
Verifier field operations	$O(\ell + \log m)$	$O(\ell + \log n)$

m = sparse matrix domain, n = number of gates, ℓ = public inputs

Choose Marlin when:

Choose Plonk when:

- High fan-in addition gates
- Existing R1CS circuits

Metric	Marlin	Plonk
Constraint System	R1CS	Custom gates
SRS degree	6 <i>m</i>	n
Proof size (\mathbb{F}_q)	8	6
Proof size (\mathbb{G}_1)	13	9
Prover v-MSM operations	11	7
Verifier field operations	$O(\ell + \log m)$	$O(\ell + \log n)$

m = sparse matrix domain, n = number of gates, ℓ = public inputs

Choose Marlin when:

Choose Plonk when:

- High fan-in addition gates
- night fan-in addition gates
- Existing R1CS circuits

General-purpose circuits

Metric	Marlin	Plonk
Constraint System	R1CS	Custom gates
SRS degree	6 <i>m</i>	n
Proof size (\mathbb{F}_q)	8	6
Proof size (\mathbb{G}_1)	13	9
Prover v-MSM operations	11	7
Verifier field operations	$O(\ell + \log m)$	$O(\ell + \log n)$

m = sparse matrix domain, n = number of gates, ℓ = public inputs

Choose Marlin when:

- High fan-in addition gates
- Existing R1CS circuits

Choose Plonk when:

- General-purpose circuits
- Smaller proof size critical

Metric	Marlin	Plonk
Constraint System	R1CS	Custom gates
SRS degree	6 <i>m</i>	n
Proof size (\mathbb{F}_q)	8	6
Proof size (\mathbb{G}_1)	13	9
Prover v-MSM operations	11	7
Verifier field operations	$O(\ell + \log m)$	$O(\ell + \log n)$

m = sparse matrix domain, n = number of gates, ℓ = public inputs

Choose Marlin when:

- High fan-in addition gates
- Existing R1CS circuits

Choose Plonk when:

- General-purpose circuits
- Smaller proof size critical

Both achieve universal & updatable SRS via KZG!

Why SageMath?

• Built-in finite field arithmetic: GF(p)

- Built-in finite field arithmetic: GF(p)
- Native polynomial operations: R. <x> = PolynomialRing(GF(p), 'x')

- Built-in finite field arithmetic: GF(p)
- Native polynomial operations: R.<x> = PolynomialRing(GF(p), 'x')
- Elliptic curve support: EllipticCurve(GF(p), [a,b])

- Built-in finite field arithmetic: GF(p)
- Native polynomial operations: R.<x> = PolynomialRing(GF(p), 'x')
- Elliptic curve support: EllipticCurve(GF(p), [a,b])
- Used extensively in cryptography research

- Built-in finite field arithmetic: GF(p)
- Native polynomial operations: R.<x> = PolynomialRing(GF(p), 'x')
- Elliptic curve support: EllipticCurve(GF(p), [a,b])
- Used extensively in cryptography research
- Educational clarity over performance

1 Self-contained mathematical exposition

- Self-contained mathematical exposition
 - All concepts built from first principles

- **1** Self-contained mathematical exposition
 - All concepts built from first principles
 - Extensive worked examples over small fields

- Self-contained mathematical exposition
 - All concepts built from first principles
 - Extensive worked examples over small fields
 - Clear progression from basics to advanced

- Self-contained mathematical exposition
 - All concepts built from first principles
 - Extensive worked examples over small fields
 - Clear progression from basics to advanced
- 2 Complete protocol implementations

- Self-contained mathematical exposition
 - All concepts built from first principles
 - Extensive worked examples over small fields
 - Clear progression from basics to advanced
- 2 Complete protocol implementations
 - Both Marlin and Plonk in SageMath

- Self-contained mathematical exposition
 - All concepts built from first principles
 - Extensive worked examples over small fields
 - Clear progression from basics to advanced
- 2 Complete protocol implementations
 - Both Marlin and Plonk in SageMath
 - Following theoretical constructions exactly

- Self-contained mathematical exposition
 - All concepts built from first principles
 - Extensive worked examples over small fields
 - Clear progression from basics to advanced
- 2 Complete protocol implementations
 - Both Marlin and Plonk in SageMath
 - Following theoretical constructions exactly
 - With extensive documentation

- Self-contained mathematical exposition
 - All concepts built from first principles
 - Extensive worked examples over small fields
 - Clear progression from basics to advanced
- 2 Complete protocol implementations
 - Both Marlin and Plonk in SageMath
 - Following theoretical constructions exactly
 - With extensive documentation
- 3 Comparative analysis

- Self-contained mathematical exposition
 - All concepts built from first principles
 - Extensive worked examples over small fields
 - Clear progression from basics to advanced
- 2 Complete protocol implementations
 - Both Marlin and Plonk in SageMath
 - Following theoretical constructions exactly
 - With extensive documentation
- Comparative analysis
 - How different designs use same primitive (KZG)

Self-contained mathematical exposition

- All concepts built from first principles
- Extensive worked examples over small fields
- Clear progression from basics to advanced

2 Complete protocol implementations

- Both Marlin and Plonk in SageMath
- Following theoretical constructions exactly
- With extensive documentation

Comparative analysis

- How different designs use same primitive (KZG)
- Trade-offs in performance and complexity

Self-contained mathematical exposition

- All concepts built from first principles
- Extensive worked examples over small fields
- Clear progression from basics to advanced

2 Complete protocol implementations

- Both Marlin and Plonk in SageMath
- Following theoretical constructions exactly
- With extensive documentation

Comparative analysis

- How different designs use same primitive (KZG)
- Trade-offs in performance and complexity
- Guidance for protocol selection

Before

Research papers Dense notation Assumed expertise

Before

Research papers Dense notation Assumed expertise This work

Before

Research papers Dense notation Assumed expertise This work

After

Clear exposition Worked examples Hands-on code

Research papers Dense notation Assumed expertise After Clear exposition Worked examples Hands-on code

Enables students to:

Understand core concept

Research papers Dense notation Assumed expertise After Clear exposition Worked examples Hands-on code

Enables students to:

- Understand core concept
- Experiment with parameters and see effects

Research papers Dense notation Assumed expertise After Clear exposition Worked examples Hands-on code

Enables students to:

- Understand core concept
- Experiment with parameters and see effects
- Build foundation for advanced study in ZKPs

Thank You!

Questions?

mohammad.ferry@ui.ac.id