
KZG Polynomial Commitment Scheme on zk-SNARKsConstruction and Its Implementation
Mohammad Ferry Husnil Arif

Faculty of Computer ScienceUniversitas Indonesia
mohammad.ferry@ui.ac.id

Final Project DefenseJune 2025



Outline
1 Introduction and Motivation
2 Evolution to Practical Systems
3 Technical Foundation
4 KZG Polynomial Commitment
5 Main zk-SNARKs Protocol
6 Conclusion

Mohammad Ferry Husnil Arif (UI) KZG for zk-SNARKs June 2025 2 / 39



What are Zero-Knowledge Proofs?

Definition
A cryptographic protocol where a prover convincesa verifier of a statement’s truth without revealing
any additional information

Three Fundamental Properties:

• Completeness: Valid proofs always accepted
• Soundness: Invalid proofs always rejected
• Zero-Knowledge: Nothing revealed beyondtruth

Applications:

• Privacy-preservingcryptocurrencies (Zcash)
• Secure healthcare datamanagement
• Confidential financialauditing
• Legal verificationframeworks
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Simple Example: Hash Preimage
The Problem:
• Alice knows a password x

• Bob knows the hash h = SHA256(x)
• Alice wants to prove she knows x without

revealing it

Without Zero-Knowledge:

✗ Alice sends x to Bob
✗ Bob learns the password!

With Zero-Knowledge:

✓ Alice proves knowledge of x
✓ Bob learns nothing about x

Alice
knows x

SHA256
x

h

Bob
knows h

xZK proof
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The Educational Challenge

High-level overviews

Lack mathematical rigor

Research papers

Dense notation
Assumed expertise

? ?

This Final Project

Accessible exposition + Concrete examples + Working implementations
Why this matters: Growing importance in blockchain, privacy technologies, andsecure computation
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Final Project Objectives
1 Make advanced cryptography accessible to undergraduate students

2 Provide complete mathematical exposition with concrete examples
3 Deliver working SageMath implementations for hands-on learning
4 Bridge theory to practice in cryptographic education

Core Focus
KZG polynomial commitment scheme and its application in two prominentzk-SNARKs protocols: Marlin and Plonk
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From Theory to Practice: zk-SNARKs

1985 2010

ZKPs

zk-SNARKs

What makes zk-SNARKs special:

• Succinct: Proofs are tiny (few hundred bytes)
• Non-interactive: No back-and-forth communication needed
• ARgument of Knowledge: Prover must know the witness
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The zk-SNARKs Ecosystem
Framework Frontend Language Proof System

Arkworks Self-contained Rust Groth16, Marlin, GM17, PlonkGnark Self-contained Go Groth16, Plonk (KZG, FRI)Hyrax None Python HyraxLEGOSnark None C++ Brakedown-likeLibSNARK xJsnark Java, C++ Groth16, Pinocchio, GGPRZokrates Self-contained Zokrates DSL Groth16, GM17, Marlin, NovaMirage None Java Pinocchio-likePySNARK Self-contained Python Groth16SnarkJS Circom JavaScript, Circom DSL Groth16, Plonk (via WASM)Rapidsnark Circom JavaScript, Circom DSL Groth16Spartan None Rust SpartanAurora (libiop) None C++ AuroraFractal (libiop) None C++ FractalVirgo None Python VirgoNoir Self-contained Rust (Noir DSL) Any ACIR-compatible systemDusk-PLONK None Rust PLONKHalo2 None (Rust API) Rust PLONK-like

Adapted from “Zero-Knowledge Proof Frameworks: A Survey” by Sheybani et al. (2025)
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Performance Comparison
Protocol Proof Size Prover Verifier Setup
Groth16 2G1 + 1G2 O(n log n) O(|x|) Circuit-specificMarlin 8Fq + 13G1 O(n log n) O(|x|+ log n) UniversalPlonk 6Fq + 9G1 O(n log n) O(|x|+ log n) Universal

Typical element sizes:
• Fq element: 32 bytes
• G1 element: 32 bytes (compressed)
• G2 element: 64 bytes (compressed)

Key Insight
Trade small efficiency loss for huge flexibility gain!
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The Universal SRS Advantage
Groth16Circuit-specific setup

Marlin/PlonkUniversal setup

Setup 1 Setup 2 Setup 3 One Setup

Circuit 1 Circuit 2 Circuit 3 Circuit 1
Circuit 2

Circuit 3

Key Advantage
Enabled by: KZG polynomial commitment scheme with updatable SRS!
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Mathematical Foundations

Three Essential Algebraic Structures

1 Finite Fields
2 Elliptic Curves
3 Bilinear Pairings

Building blocks for modern cryptography
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Finite Fields
Definition
A field (F ,+, ·) is a commutative ring with unity where every non-zero element has amultiplicative inverse

Theorem
For any prime q, the integers modulo q with operations + and · form a finite field,denoted Fq

Example in F7 = {0, 1, 2, 3, 4, 5, 6}:

• Addition: 5 + 4 = 9 ≡ 2 (mod 7)
• Multiplication: 3 · 5 = 15 ≡ 1 (mod 7)
• Inverse: 3−1 = 5 since 3 · 5 ≡ 1 (mod 7)

In cryptography: q ≈ 2256 for security
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Elliptic Curves
Definition
An elliptic curve over Fq is the set of points
(x , y) satisfying:

y2 = x3 + ax + b

plus a point at infinity O

Group structure:

• Points form an abelian group
• Identity: O

Point addition

P
Q

−(P + Q)

P + Q
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Bilinear Pairings
Definition
A bilinear pairing is a map e : G1 ×G2 → GT where:

• G1,G2: cyclic groups of prime order q (usually elliptic curve groups)
• GT : cyclic group of order q (usually in F∗

qk
)

Bilinearity property:

e(aP, bQ) = e(P,Q)ab for all a, b ∈ Fq

Properties:

• Non-degenerate: e(P,Q) ̸= 1 for generators P,Q
• Efficiently computable
• Examples: Weil pairing, Tate pairing
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zk-SNARKs Architecture
A functionalcommitmentscheme

(cryptographic object)
(1)

A compatibleinteractiveproof
(info. theoretic object)

(2)

zk-SNARKs forgeneral circuits+

In this work
KZG (same for both) + Different interactive proofs (Marlin vs Plonk)
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The Computation Pipeline
Computation

Constraint System

Polynomial Encoding

Polynomial Identity Testing

arithmetization

FFT

KZG + Interactive proof
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Why Polynomials?

x

y

Unique Interpolation

• n points uniquely determine degree
n − 1 polynomial
• Can encode n values as single object
• Efficient algorithms (FFT) with
O(n log n)
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The Schwartz-Zippel Lemma
Lemma
Let Fq be a finite field and f ∈ Fq[X1,X2, . . . ,Xn] be a non-zero polynomial of totaldegree at most d . Then

Pr[f (r) = 0 | r ←$ Fn
q] ≤

d

|Fq|

Example: Consider f (x , y) = x3 + xy2 − 2y3 − 2x + y in F7[x , y ]Total degree: d = 3
Roots in F2

7: (0, 0), (0, 2), (0, 5), (2, 6), (3, 0), (4, 0), (5, 1)
Probability calculation:

• Total points in F2
7: 72 = 49

• Number of roots: 7
• Pr[f (r) = 0] = 7

49 = 1
7 ≤

3
7 = d

|F7| ✓

In practice: q ≈ 2256, so probability ≤ d
2256

is negligible!
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Polynomial Identity Testing Protocol
Prover Verifier

1. Commit to polynomials
c1 = com(p1), c2 = com(p2), . . .

2. Random challenge
z ←$ Fq

3. Open commitments
p1(z), p2(z), . . . with proofs π1, π2, . . .

4. Verify relation
Security guarantees:

• Binding: Cannot change polynomials after commitment
• Soundness: Schwartz-Zippel ensures false claims fail with probability ≥ 1− d

|Fq |
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Interactive to Non-Interactive
Interactive Protocol

P V

Multiple rounds

Fiat-Shamir

Non-Interactive Protocol

P V1. Complete proof

2. Verify

Key transformation: Replace verifier’s random challenges with hash function
c1, c2, . . . z

H

transcript challenge
Result
Single proof string that can be verified by anyone - perfect for blockchain!
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KZG Construction Overview
Setup Phase (Trusted)
Generate powers of secret x in Fq:

SRS = {G1, xG1, x
2G1, . . . , x

dG1,G2, xG2}

Secret x is destroyed after setup!

Key Operations:

1 Commit: For polynomial p(X ) =
∑

aiX
i

C = p(x)G1 =
∑

ai (x
iG1)

2 Open: Prove p(z) = v by showing (p(X )− v) divisible by (X − z)

3 Verify: Check using bilinear pairing
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Committing to Polynomials
Example: p(X ) = 2X 2 + 3X + 5

Using SRS powers:
C = p(x)G1

= (2x2 + 3x + 5)G1

= 2(x2G1) + 3(xG1) + 5G1

Result: Single group element C !

5
3
2

a0

a1

a2

G1

xG1

x2G1

C
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Opening at Evaluation Point
Theorem
For p ∈ Fq[X ] and z , v ∈ Fq ,

p(z) = v ⇐⇒ (X − z) divides (p(X )− v)

Goal: Prove that committed polynomial p satisfies p(z) = v
Protocol:

1 Compute witness polynomial: w(X ) = p(X )−v
X−z

2 Create proof: π = w(x)G1 using SRS
3 Proof size: Just one group element!

Example: If p(X ) = X 2 + 2X + 1 and claiming p(3) = 16:
w(X ) =

X 2 + 2X + 1− 16

X − 3
=

X 2 + 2X − 15

X − 3
= X + 5
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Verification via Pairing
Verification Equation

e(C − vG1,G2)
?
= e(π, xG2 − zG2)

Why this works:

LHS = e((p(x)− v)G1,G2) = e(w(x)(x − z)G1,G2) = e(w(x)G1, (x − z)G2) = RHS

Verifier efficiency:

• Just 2 pairing operations
• Independent of polynomial degree
• Constant time verification!
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Security Properties
1. Completeness ✓

• Honest prover always succeeds
• Straightforward from construction
• If p(z) = v , then verificationequation holds

2. Evaluation Binding

• Cannot open to two different valuesat same point
• Based on Strong Diffie-Hellman(SDH) assumption
• Breaking requires solving hardproblem

Remark
Complete zk-SNARKs actually need a stronger property than evaluation binding:
extractability. This ensures any valid commitment corresponds to an actualpolynomial (as required in the Marlin paper).
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Proving Evaluation Binding
Strong Diffie-Hellman (SDH) Assumption
Given {G1, xG1, x

2G1, . . . , x
dG1,G2, xG2}, hard to compute:(

c ,
1

x + c
G1

)
for any c ∈ Fq

Proof idea: If adversary breaks binding⇒ can break SDH
Suppose adversary outputs (C , z , v , v ′, π, π′) with v ̸= v ′

Both proofs verify:
e(C − vG1,G2) = e(π, xG2 − zG2)

e(C − v ′G1,G2) = e(π′, xG2 − zG2)

Subtracting:
e((v ′ − v)G1,G2) = e(π − π′, xG2 − zG2)

If π ̸= π′: Can extract 1
x−zG1 =

π−π′

v ′−v ⇒ Breaks SDH!
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Constraint System
Marlin (R1CS)

Constraint equation:

Az ◦ Bz = Cz

Where:
• A,B,C ∈ Fn×n

q are constraint matrices
• z = (x ,w) ∈ Fn

q is the assignment vector
• x are public inputs, w are witness values
• ◦ denotes entry-wise product

Plonk
Gate constraint:

qL · zai + qR · zbi + qO · zci
+ qM · (zai · zbi ) + qC = 0

Where:
• qL, qR , qO , qM , qC ∈ Fn

q are selectors
• z = (x ,w) ∈ Fm

q is wire assignment
• x are public inputs, w are witness values
• a, b, c ∈ [m]n are wire indices
• Additional copy constraints via σ
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Example Problem Definition
Polynomial Evaluation Problem
Prove knowledge of secret X ∈ F23 such that:

Y = X 3 + 2X + 5

where Y = 15 is public and X = 3 is the witness.

Computation trace:

• w1 = X = 3
• w2 = X 2 = 9
• w3 = X 3 = 4 (note: 27 mod 23 = 4)
• w4 = 2X = 6
• w5 = X 3 + 2X = 10
• Y = w5 + 5 = 15 ✓

Next: How Marlin and Plonk encode this computation differently

Mohammad Ferry Husnil Arif (UI) KZG for zk-SNARKs June 2025 28 / 39
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Marlin R1CS Encoding
Assignment vector: z = [1, 15, 3, 9, 4, 6]

• Public inputs: [1,Y ]

• Witness values: [X ,X 2,X 3, 2X ]

Constraints:

1 w1 · w1 = w2 (computing X 2)
2 w2 · w1 = w3 (computing X 3)
3 2 · w1 = w4 (computing 2X )
4 (5 + w3 + w4) · 1 = Y (final addition)
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Marlin Constraint Matrices

A =


0 0 1 0 0 0
0 0 0 1 0 0
2 0 0 0 0 0
5 0 0 0 1 1

 , B =


0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0



C =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0



Note: Matrices are 4× 6 (4 constraints, 6 variables). In practice, padded with zerorows to form square n × n matrices for polynomial encoding.
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Plonk Circuit Encoding
Wire assignment: z = [1, 2, 5, 15, 3, 9, 4, 6, 10]

• Wires 1-4: public inputs [1, 2, 5,Y ]

• Wires 5-9: witness values [X ,X 2,X 3, 2X ,X 3 + 2X ]

Constraints:

1-4. Constant gates: z1 = 1, z2 = 2, z3 = 5, z4 = 15

5. z5 · z5 = z6 (computing X 2)
6. z6 · z5 = z7 (computing X 3)
7. z5 · z2 = z8 (computing 2X )
8. z7 + z8 = z9 (computing X 3 + 2X )
9. z9 + z3 = z4 (final addition)
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• Wires 5-9: witness values [X ,X 2,X 3, 2X ,X 3 + 2X ]

Constraints:
1-4. Constant gates: z1 = 1, z2 = 2, z3 = 5, z4 = 15
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Plonk Selector Vectors and Wire Indices
Selector vectors and wire indices:

G1 G2 G3 G4 G5 G6 G7 G8 G9
qL 1 1 1 1 0 0 0 1 1
qR 0 0 0 0 0 0 0 1 1
qO 0 0 0 0 -1 -1 -1 -1 -1
qM 0 0 0 0 1 1 1 0 0
qC -1 -2 -5 -15 0 0 0 0 0
a 1 2 3 4 5 6 5 7 9
b 0 0 0 0 5 5 2 8 3
c 0 0 0 0 6 7 8 9 4

Copy constraints: Permutation σ ensures wire consistency σ =
(1)(2, 16)(3, 18)(4, 27)(5, 7, 14, 15)(6, 23)(8, 24)(9, 26)(10, 11, 12, 13, 19, 20, 21, 22)(17, 25)
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Polynomial Encoding

Marlin

Witness polynomials:

• ŵ(X ) - shifted witness
• ẑ(X ) - full assignment
• ẑA(X ), ẑB(X ), ẑC (X ) - linearcombinations

Matrix polynomials:

• ˆrowM∗(X ), ˆcolM∗(X ), v̂alM∗(X )

• For M ∈ {A,B,C}

Plonk

Wire polynomials:

• a(X ), b(X ), c(X ) - left, right, output

Selector polynomials:

• qL(X ), qR(X ), qO(X ) - linear
• qM(X ) - multiplication
• qC (X ) - constant

Permutation polynomials:

• Sσ1(X ), Sσ2(X ),Sσ3(X )
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• ẑ(X ) - full assignment
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Polynomial Identity Testing
Marlin

Entry-wise product constraint:

ẑA(X )ẑB(X )− ẑC (X ) = h0(X )vH(X )

First sumcheck relation:

s(X ) + r(α,X )
∑
M

ηM ẑM(X )

− t(X )ẑ(X ) = h1(X )vH(X ) + Xg1(X )

Second sumcheck relation:

a(X )− b(X )q2(X ) = h2(X )vK (X )

All identities verified at random evaluation
points β1, β2 ∈ Fq

Plonk
Gate constraint:

qL(X )a(X ) + qR(X )b(X ) + qO(X )c(X )

+ qM(X )a(X )b(X ) + qC (X ) + (X )

= h0(X )vH(X )

Permutation first:

L1(X )(Z (X )− 1) = q1(X )vH(X )

Permutation second:

Z(X )f ′(X )− g ′(X )Z(X ) = q2(X )vH(X )

Combined into quotient t(X ) and verified at
random ζ ∈ Fq

Key: All constraints must hold over domain H ⇒ divisible by vH(X )
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Marlin vs Plonk: Performance Comparison
Metric Marlin Plonk
Constraint System R1CS Custom gates
SRS degree 6m n
Proof size (Fq) 8 6
Proof size (G1) 13 9
Prover v-MSM operations 11 7
Verifier field operations O(ℓ+ logm) O(ℓ+ log n)

m = sparse matrix domain, n = number of gates, ℓ = public inputs
Choose Marlin when:

• High fan-in addition gates
• Existing R1CS circuits

Choose Plonk when:

• General-purpose circuits
• Smaller proof size critical

Both achieve universal & updatable SRS via KZG!
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Implementation Architecture

Why SageMath?

• Built-in finite field arithmetic: GF(p)
• Native polynomial operations: R.<x> = PolynomialRing(GF(p), ’x’)

• Elliptic curve support: EllipticCurve(GF(p), [a,b])

• Used extensively in cryptography research
• Educational clarity over performance
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Contributions Summary
1 Self-contained mathematical exposition

• All concepts built from first principles
• Extensive worked examples over small fields
• Clear progression from basics to advanced

2 Complete protocol implementations

• Both Marlin and Plonk in SageMath
• Following theoretical constructions exactly
• With extensive documentation

3 Comparative analysis

• How different designs use same primitive (KZG)
• Trade-offs in performance and complexity
• Guidance for protocol selection
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Educational Impact

Before
Research papersDense notationAssumed expertise

This work
After

Clear expositionWorked examplesHands-on code
Enables students to:

• Understand core concept
• Experiment with parameters and see effects
• Build foundation for advanced study in ZKPs
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Thank You!
Questions?

mohammad.ferry@ui.ac.id
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