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Exercise 1 - Easy or difficult?

For each problem, determine if it is easy (polynomial complexity) or difficult to solve (expo-
nential complexity) and justify by giving the algorithm if it exists (for m ≥ n):

1. Given a lattice basis B ∈ Zm×n and a vector v ∈ Zm, decide if v ∈ Λ(B).

Solution: This problem is easy (polynomial complexity). To check if v ∈ Λ(B), we
need to determine if there exists an integer vector x ∈ Zn such that Bx = v.

Since B generates a lattice, it has full column rank. We solve the system Bx = v over
Q using standard Gaussian elimination. If the system has no solution over Q, then
certainly v /∈ Λ(B). If a unique solution x ∈ Qn exists (which is guaranteed for full
column rank), we check whether all components of x are integers. If x ∈ Zn, then
v ∈ Λ(B); otherwise v /∈ Λ(B).

The complexity is O(mn2) for Gaussian elimination over Q, plus O(n) for checking
integrality.

2. Given B1,B2 ∈ Zm×n, decide if Λ(B1) = Λ(B2).

Solution: This problem is easy (polynomial complexity). To check if Λ(B1) = Λ(B2),
we verify that each basis generates the same lattice by checking mutual containment.

Two lattices are equal if and only if each is contained in the other. Therefore:

(a) Check if each column ofB1 belongs to Λ(B2) using the algorithm from Exercise 1.1

(b) Check if each column of B2 belongs to Λ(B1) using the same algorithm

(c) If both conditions hold, then Λ(B1) = Λ(B2)

Since we perform 2n membership tests, each taking O(mn2) time, the total complexity
is O(mn3).

3. Given an integer matrix A ∈ Zm×n
q , compute a basis for the lattice {x ∈ Zm

q : xTA =
0}.
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Solution: This problem is easy (polynomial complexity). Note that the lattice {x ∈
Zm

q : xTA = 0} is equivalent to the orthogonal lattice Λ⊥
q (A

T ) where AT ∈ Zn×m
q .

A detailed algorithm for computing a basis of such orthogonal lattices is provided in
Exercise 5.3, which shows how to efficiently construct a basis with the algorithm runs
in polynomial time.

4. Given an integer matrixA ∈ Zm×n
q , compute a basis for the lattice {x ∈ Zm

q : xTA = 0}
such that each vector of this basis has an euclidean norm bounded by q/2

√
n.

Solution: This problem is difficult (exponential complexity). While finding some
basis for the lattice Λ⊥

q (A) = {x ∈ Zm
q : xTA = 0 mod q} is easy (as shown in

Exercise 1.3), finding a basis with all vectors having Euclidean norm bounded by
β = q/(2

√
n) is computationally hard.

This is precisely the Short Integer Solution (SIS) problem. By Proposition 5.7 from
[GPV08], solving SISq,m,β with β = q/(2

√
n) is as hard as approximating SIVP (Short-

est Independent Vectors Problem) in the worst case to within γ = β · Õ(
√
n) factors.

Specifically, with β = q/(2
√
n), we get:

γ =
q

2
√
n
· Õ(
√
n) =

q

2
· Õ(1)

Since q is typically polynomial in n (i.e., q = poly(n)), we have γ = poly(n). According
to the complexity of lattice problems, solving SIVPγ with γ = poly(n) requires time
2Ω(n), which is exponential.

5. Given a basis C, check if Λ(C) is cyclic (i.e., for every lattice vector x ∈ Λ(C), all the
vectors obtained by cyclically rotating the coordinates of x also belong to the lattice).

Solution: This problem is easy (polynomial complexity). To check if Λ(C) is cyclic,
we need to verify that for every lattice vector v ∈ Λ(C), its cyclic rotation T(v) also
belongs to the lattice, where T is the cyclic permutation matrix that shifts coordinates:
(v1, v2, . . . , vn) 7→ (vn, v1, . . . , vn−1).

The key observation is that we only need to check this property for the basis vectors
of C. This is because if T(ci) ∈ Λ(C) for all basis vectors ci (columns of C), then by
linearity of T:

• For any v =
∑n

i=1 aici ∈ Λ(C) where ai ∈ Z
• We have T(v) = T (

∑n
i=1 aici) =

∑n
i=1 aiT(ci)

• Since each T(ci) ∈ Λ(C) and lattices are closed under integer linear combinations,
we get T(v) ∈ Λ(C)

Therefore, our algorithm is:

(a) For each column ci of the basis matrix C:
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(b) Compute T(ci) (the cyclic rotation of ci)

(c) Check if T(ci) ∈ Λ(C) by solving the system Cx = T(ci) for integer x ∈ Zn

(d) If no integer solution exists for any ci, then the lattice is not cyclic

Step 3 uses the same algorithm as Exercise 1.1 (checking membership in a lattice). The
total complexity is O(n) times the complexity of Exercise 1.1, which gives us O(mn3).

6. Let A ∈ Zm×n
q be a uniformly sampled matrix with m ≥ 4n log q, and r be uniformly

sampled in {0, 1}m. Given (A, rTA), find r.

Solution: This problem is difficult (exponential complexity). By Lemma 5.1 from
[GPV08], when m ≥ 2n log q, for all but a q−n fraction of matrices A ∈ Zn×m

q , the
subset-sums of columns of A generate Zn

q and stronger result in footnote 7 of [GPV08]
state that a random subset-sum of A’s columns is statistically close to uniform over
Zn

q for almost all A.

In our case, withm ≥ 4n log q (which exceeds the requirement), the syndrome rTA mod
q is statistically close to uniform over Zn

q . This means it reveals essentially no infor-
mation about r that could help narrow down the search space.

The only known algorithm is brute force:

(a) For each possible r′ ∈ {0, 1}m:
(b) Compute s′ = r′TA mod q

(c) If s′ = rTA, output r′ and halt

This algorithm has complexity O(mn · 2m), which is exponential in m. The statisti-
cal closeness to uniform distribution ensures that no better algorithm exists, as the
syndrome provides no useful structure to exploit.

7. Let A ∈ Zm×n
q be a uniformly sampled matrix with m ≥ 4n log q, and r be uniformly

sampled in {0, 1}n. Given (A,Ar), find r.

Solution: This problem is easy (polynomial complexity).

This is simply solving a linear system Ax = b where b = Ar is given. Since m ≥
4n log q ≫ n, the system is overdetermined (more equations than unknowns). With
high probability over the choice of randomA, the matrix has full column rank, ensuring
at most one solution exists.

The algorithm is:

(a) Solve the linear system Ax = b over Zq to find x ∈ Zn
q

(b) Check if x ∈ {0, 1}n

(c) If yes, output x = r; otherwise, no valid solution exists

Step 1 can be done using Gaussian elimination, taking polynomial time O(mn2). Since
A is random with m ≫ n, the solution (if it exists) is unique with overwhelming
probability, and it must be the original r since Ar = b.
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Exercise 2 - Solving LWE in dimension 2 and 3

Solve (in Z) the following linear systems of equations with noise, knowing that in each
equation, the noise is in {0, 1}:

1.

x1 + x2 ≃ 3

2x1 + x2 ≃ 4

x1 + 3x2 ≃ 4

−x1 + x2 ≃ 1

3x1 + 2x2 ≃ 5

2.

2x1 + x2 + x3 ≃ 10

x1 + 4x2 + 3x3 ≃ 26

3x1 + x2 + 2x3 ≃ 13

x1 + 2x2 + 2x3 ≃ 15

2x1 + 2x2 + x3 ≃ 15

Solution: We solve these noisy linear systems by reformulating them as Closest Vector
Problem (CVP) instances and applying Kannan’s embedding technique [Kan83].

For a system of noisy equations where each equation has the form aT
i x ≃ bi with noise

in {0, 1}, we can write:
Ax = b− e

where A is the coefficient matrix, b is the vector of right-hand sides, and e ∈ {0, 1}m
is the unknown noise vector.

This is equivalent to finding the closest point in the lattice Λ = {Ay : y ∈ Zn} to the
target vector b. The closest lattice point Ax∗ will satisfy ∥Ax∗ − b∥∞ ≤ 1, ensuring
all noise components are in {0, 1}.
Following Kannan’s embedding method, we construct an extended lattice with basis:

B′ =

(
In AT

0 −bT

)
and append an additional column (0, . . . , 0,M)T where M is a large embedding pa-
rameter.

The short vector in this extended lattice has the form (x∗, 1) which, when multiplied
by B′, gives us (x∗,Ax∗ − b,M). Since Ax∗ − b = −e where e ∈ {0, 1}m, we can
directly verify that each component of Ax∗ − b is in {−1, 0}.
Implementation in SageMath:

For system 2.1:
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1 A = matrix(ZZ , [

2 [1, 1],

3 [2, 1],

4 [1, 3],

5 [-1, 1],

6 [3, 2]

7 ])

8 v = vector(ZZ , [3, 4, 4, 1, 5])

9

10 # Build the block matrix

11 M = block_matrix ([

12 [identity_matrix (2), A.T],

13 [zero_matrix (1, 2), -matrix(ZZ , v)]

14 ])

15 M = M.augment(vector(ZZ, [0, 0, 2**64]))

16 M[:, 2:7] *= 2**32

17 M = M.LLL()

18 M[:, 2:7] /= 2**32

19

20 for row in M:

21 if abs(row[-1]) == 2**64:

22 x = row [0:2]

23 assert all(num in [0, 1] for num in (v - A*x))

24 print(f"{x=}")

This gives us x = (1,1) with noise vector e = (1, 1, 0, 1, 0).

For system 2.2:

1 A = matrix(ZZ , [

2 [2, 1, 1],

3 [1, 4, 3],

4 [3, 1, 2],

5 [1, 2, 2],

6 [2, 2, 1]

7 ])

8 v = vector(ZZ , [10, 26, 13, 15, 15])

9

10 # Build the block matrix

11 M = block_matrix ([

12 [identity_matrix (3), A.T],

13 [zero_matrix (1, 3), -matrix(ZZ , v)]

14 ])

15 M = M.augment(vector(ZZ, [0, 0, 0, 2**64]))

16 M[:, 3:8] *= 2**32

17 M = M.LLL()

18 M[:, 3:8] /= 2**32

19
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20 for row in M:

21 if abs(row[-1]) == 2**64:

22 x = row [0:3]

23 assert all(num in [0, 1] for num in (v - A*x))

24 print(f"{x=}")

This gives us x = (2,5,1) with noise vector e = (0, 1, 0, 1, 0).

The scaling factors 232 and 264 are used to ensure numerical stability during LLL
reduction while preserving the integer structure of the problem.

Verification: For both solutions, we verify that Ax + e = b where each component
of e is indeed in {0, 1}.

Exercise 3 - Reduction

1. Let n ≥ 1 be an integer, show that there is a reduction from LWEn,q,α for m samples
to SISq,m,β. On which condition on α and β does it work?

Solution: We show a reduction from LWEn,q,α (decision version) to SISq,m,β.

First, let us define the two problems precisely:

• LWEn,q,α (Decision): Given A ∈ Zm×n
q and v ∈ Zm

q , distinguish between:

– Case 1: v = As+ e (mod q) where s← U(Zn
q ) and e← DZm,αq

– Case 2: v← U(Zm
q ) (uniformly random)

• SISq,m,β: Given A ∈ Zm×n
q , find a nonzero vector w ∈ Zm such that ATw = 0

(mod q) and ∥w∥ ≤ β.

The Reduction: Given an LWE instance (A,v), we use the SIS solver to distinguish
whether v is an LWE sample or uniformly random:

(a) Use the SISq,m,β solver on A to obtain a short vector w ∈ Zm such that ATw = 0
(mod q) and ∥w∥ ≤ β.

(b) Compute the inner product ⟨v,w⟩ (mod q).

(c) If |⟨v,w⟩| < q/10, output ”LWE sample”; otherwise output ”uniform”.

Analysis: The key observation is that:

• If v = As+ e, then

⟨v,w⟩ = ⟨As+ e,w⟩ = ⟨s,ATw⟩+ ⟨e,w⟩ = 0 + ⟨e,w⟩ (mod q)

• If v is uniform, then ⟨v,w⟩ is uniformly distributed over Zq.
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To bound |⟨e,w⟩|, we need know the bound ∥e∥ where e← DZm,αq.

For negligible ϵ, by Lemma 3.1 from [GPV08], the smoothing parameter of Zm satisfies:

ηϵ(Zm) ≤ bl(Zm) · ω(
√

logm) = 1 · ω(
√
logm) = ω(

√
logm)

If we set αq ≥ ω(
√
logm), then αq ≥ ηϵ(Zm).

By Lemma 2.9 from [GPV08], when s = αq ≥ ηϵ(Zm), for e← DZm,αq we have:

Pr[∥e∥ > αq
√
m] ≤ 1 + ϵ

1− ϵ
· 2−m

which is negligible. Therefore, with overwhelming probability, ∥e∥ ≤ αq
√
m.

Consequently:
|⟨e,w⟩| ≤ ∥e∥ · ∥w∥ ≤ αq

√
m · β = αβq

√
m

For the reduction to successfully distinguish between the two cases, we need αβq
√
m <

q/10, which gives us:

Parameter Condition: The reduction works when

αβ <
1

10
√
m

assuming αq ≥ ω(
√
logm) hold.

Under this condition, LWE samples will have |⟨v,w⟩| = |⟨e,w⟩| < q/10, while uniform
samples will have ⟨v,w⟩ distributed uniformly over Zq, allowing us to distinguish
between the two cases.

Exercise 4 - Dual-Regev Encryption scheme

We first define the Dual-Regev encryption scheme.

Definition 1 (Dual-Regev Encryption). Let n, m, and q be integers such that q is prime
and m ≥ O(n log q), and let α, γ be real numbers.

DualRegev.KeyGen(n,m): Sample A uniform in Zm×n
q , and x discrete Gaussian on Zm

of parameter γq. The secret key is sk = x and the public key is pk = yT = xTA mod q in
Zn

q .

DualRegev.Enc(M, pk): Given M ∈ {0, 1}, sample s ← U(Zn
q ), e ← DZm,αq and e′ ←

DZ,αq. The ciphertext is (As+ e,yT s+ e′ + ⌊q/2⌋ ·M) ∈ Zm
q × Zq.

DualRegev.Dec((b, c), sk): Given a ciphertext (b, c), compute ... ?
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1. Give the decryption algorithm, what do you compute, and how do you find M?

Solution: The decryption algorithm works as follows:

DualRegev.Dec((b, c), sk = x):

(a) Compute b′ = c− xTb (mod q)

(b) Output M = 0 if b′ is closer to 0 than to ⌊q/2⌋ (i.e., if |b′| < q/10)

(c) Output M = 1 if b′ is closer to ⌊q/2⌋ than to 0 (i.e., if |b′ − ⌊q/2⌋| < q/10)

This works because:

b′ = c− xTb = (yT s+ e′ + ⌊q/2⌋ ·M)− xT (As+ e)

= yT s+ e′ + ⌊q/2⌋ ·M − xTAs− xTe

= e′ − xTe+ ⌊q/2⌋ ·M

where we used the fact that yT = xTA (mod q).

2. What is the condition between α, γ and q to make sure the scheme is correct?

Solution: For correct decryption, we need |e′ − xTe| < q/10 to ensure we can distin-
guish between the cases M = 0 and M = 1.

To analyze this, we define:

ẽ =

(
e′

−e

)
∈ Zm+1, x̃ =

(
1
x

)
∈ Zm+1

Then e′ − xTe = x̃T ẽ, and we can bound:

|e′ − xTe| = |x̃T ẽ| ≤ ∥x̃∥ · ∥ẽ∥

Following the same approach as in Exercise 3, we use Lemma 3.1 from [GPV08] to
establish that the smoothing parameter ηϵ(Zm) ≤ ω(

√
logm). Then, if we set αq ≥

ω(
√
logm) and γq ≥ ω(

√
logm), we can apply Lemma 2.9 from [GPV08] to obtain

that with overwhelming probability:

• ∥ẽ∥ ≤ αq
√
m+ 1 (since ẽ has distribution DZm+1,αq)

• ∥x∥ ≤ γq
√
m (since x← DZm,γq)

Since ∥x̃∥2 = 1 + ∥x∥2, we have:

∥x̃∥ =
√
1 + ∥x∥2 ≤

√
1 + γ2q2m

Therefore:
|e′ − xTe| ≤

√
1 + γ2q2m · αq

√
m+ 1
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For large γq
√
m, we can approximate

√
1 + γ2q2m ≈ γq

√
m, giving:

|e′ − xTe| ≲ γq
√
m · αq

√
m+ 1 ≈ αγq2m

For correctness, we require:

αγq2m <
q

10

Correctness Condition:

αγq <
1

10m

This condition ensures correct decryption with overwhelming probability, assuming
αq ≥ ω(

√
logm) and γq ≥ ω(

√
logm).

3. Show that the distribution of the public key is statistically close to the uniform distri-
bution in Zn

q .

Solution: The public key in the Dual-Regev encryption scheme is yT = xTA mod q
where x ← DZm,γq. By Corollary 5.4 from [GPV08], for all but a 2q−n fraction of
A ∈ Zm×n

q and for parameter γq ≥ ω(
√
logm) (as required in part 4.2 for correctness),

the distribution of xTA mod q for x← DZm,γq is statistically close to uniform over Zn
q .

4. Prove that the Dual-Regev encryption scheme is IND-CPA secure under the hardness
of the LWE problem.

Solution: We prove that the Dual-Regev encryption scheme is IND-CPA secure by
reduction from the decisional LWE problem. We show that if there exists an adversary
A that breaks the IND-CPA security of Dual-Regev with non-negligible advantage ε,
then we can construct an algorithm B that solves the decisional LWE problem with
the same advantage ε. The precise definition of IND-CPA and LWE protocol we give
below.

IND-CPA

C A
b← U({0, 1})
Generate (pk, sk)

pk

Choose M0,M1

M0,M1

c← Enc(pk,Mb)

c

Output b′

A wins if b = b′
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AdvIND-CPA
A =

∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣
LWE

C A
A← U(Zm×n

q )

RAND(b = 0) : b← U(Zm
q )

LWE(b = 1) : b = As+ e

(A,b)

output b′

AdvlweA =
∣∣∣Pr[A RAND−−−−→ 1]− Pr[A LWE−−−→ 1]

∣∣∣
Suppose there exists a PPT adversary A that breaks the IND-CPA security of Dual-
Regev with non-negligible advantage ε. We construct a PPT algorithm B that solves
the decisional LWE problem with advantage ε. The exact algorithm can be seen below

Reduction Protocol

C B A
Ã = (A;uT )← U(Z(m+1)×n

q )

RAND : b̃← U(Zm+1
q )

LWE : b̃ = Ãs+ ẽ

(Ã, b̃)

Extract A,u from Ã

(A,u)

Choose M0,M1

M0,M1

b← U({0, 1})
Extract b, (uT s+ e′) from b̃

c = uT s+ e′ + ⌊q/2⌋ ·Mb

(b, c)

Output b′

b′

If b = b′ output 1

Else output 0

The reduction B receives a decisional LWE challenge (Ã, b̃) where Ã ∈ Z(m+1)×n
q is

uniformly random, and b̃ ∈ Zm+1
q is either:

• RAND case: b̃← U(Zm+1
q ) (uniformly random)

• LWE case: b̃ = Ãs+ ẽ for some secret s ∈ Zn
q and error ẽ← DZm+1,αq
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B simulates the IND-CPA game for A as follows:

(a) Key Generation: B parses Ã =

(
A
uT

)
where A ∈ Zm×n

q and u ∈ Zn
q . It sends

the public key pk = (A,u) to A.
(b) Challenge: A sends two messages M0,M1 ∈ {0, 1}. B chooses a random bit

b← U({0, 1}).

(c) Ciphertext Generation: B parses b̃ =

(
b
v

)
where b ∈ Zm

q and v ∈ Zq. It

computes:
c = v + ⌊q/2⌋ ·Mb

and sends the ciphertext (b, c) to A.
(d) Output: A outputs a bit b′. If b = b′, then B outputs 1 (guessing LWE);

otherwise, it outputs 0 (guessing RAND).

Analysis:

Case 1: LWE instance. When b̃ = Ãs+ ẽ, we have:

b̃ =

(
A
uT

)
s+

(
e
e′

)
=

(
As+ e
uT s+ e′

)
Therefore, b = As+ e and v = uT s+ e′. The ciphertext is:

(b, c) = (As+ e,uT s+ e′ + ⌊q/2⌋ ·Mb)

This is exactly a valid Dual-Regev encryption of Mb under public key (A,u) with
randomness s and error terms e, e′. Since u is uniformly random (as part of Ã), by
the result from Exercise 4.3, the public key distribution is statistically close to that of
the real Dual-Regev scheme.

Therefore, A receives a perfect simulation of the IND-CPA game and outputs b′ = b
with probability 1

2
+ ε.

Case 2: RAND instance. When b̃ is uniformly random, both b and v are uniformly
random and independent. In particular, v is uniform over Zq, so:

c = v + ⌊q/2⌋ ·Mb

is uniformly distributed over Zq regardless of the value of Mb. The ciphertext reveals
no information about b, so A can only guess randomly. Thus, Pr[b′ = b] = 1

2
.

Advantage Calculation:

AdvlweB = |Pr[B → 1 | LWE]− Pr[B → 1 | RAND]|
= |Pr[b′ = b | LWE]− Pr[b′ = b | RAND]|

=

∣∣∣∣(1

2
+ ε

)
− 1

2

∣∣∣∣
= ε
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Since ε is non-negligible by assumption, B solves the decisional LWE problem with non-
negligible advantage, contradicting the hardness of LWE. Therefore, no such adversary
A can exist, and the Dual-Regev encryption scheme is IND-CPA secure under the LWE
assumption.

Exercise 5

Let A ∈ Zn×m
q be a matrix specifying the q-ary lattice Λ⊥

q (A) = {x ∈ Zm : Ax = 0 mod
q}. You may assume throughout this problem that q is prime (but it is not a necessary
hypothesis).

Note that A is the transpose of the matrix A ∈ Zm×n
q used during the lecture.

Note: The solutions to parts 1-3 follow closely the development in [Pei22], particularly the
results on equivalent lattice representations and canonical basis construction for SIS lattices.

1. Describe an efficient algorithm that finds an n-by-n submatrix of A which is invertible
over Zq if one exists. (For uniformly random matrix A and typically used m, it can
be shown that such a submatrix exists with high probability). Also argue that this
invertible submatrix can be moved to the first n columns of A, without essentially
changing the lattice.

Solution: To find an n× n invertible submatrix of A ∈ Zn×m
q :

Algorithm:

(a) Compute the reduced row echelon form (RREF) of A over Zq

(b) Identify the pivot columns (columns with leading non-zero entries)

(c) If there are at least n pivot columns, the first n pivot columns form an invertible
n× n submatrix

Since q is prime, Zq is a field, so the pivot columns are linearly independent. An n×n
matrix over a field is invertible if and only if its columns are linearly independent.

To move this invertible submatrix to the first n columns, let the pivot columns have
indices {i1, . . . , in}. Construct a permutation matrix P that moves these columns to
positions 1, . . . , n. ThenA′ = AP has the form [H|B] whereH ∈ Zn×n

q is the invertible

submatrix and B ∈ Zn×(m−n)
q contains the remaining columns.

To show this doesn’t essentially change the lattice, we state and prove the following
lemma:

Lemma 2 ([Pei22, Lemma 1.3]). For any invertible matrix T ∈ Zm×m
q , we have

Λ⊥
q (A ·T) = T−1 · Λ⊥

q (A)
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Proof. We show both set containments.

(⊆) Let x ∈ Λ⊥
q (A ·T). Then (A ·T)x = 0 (mod q). Let y = Tx. Then

Ay = A(Tx) = (A ·T)x = 0 (mod q)

so y ∈ Λ⊥
q (A). Since x = T−1y, we have x ∈ T−1 · Λ⊥

q (A).

(⊇) Let x ∈ T−1 · Λ⊥
q (A). Then x = T−1y for some y ∈ Λ⊥

q (A). We have

(A ·T)x = (A ·T)(T−1y) = Ay = 0 (mod q)

so x ∈ Λ⊥
q (A ·T). ■

For a permutation matrix P is invertible matrix. Therefore, Λ⊥
q (AP) = P−1 ·Λ⊥

q (A) is
simply a coordinate permutation of Λ⊥

q (A), preserving all essential geometric properties
like determinant and successive minima.

2. Prove that the invertible submatrix can be replaced by the identity matrix In, possibly
changing the rest of A as well, without changing the lattice.

Solution: Given A = [H|A′] where H ∈ Zn×n
q is invertible and A′ ∈ Zn×(m−n)

q , we

can transform it to [In|Ã] without changing the lattice.

Lemma 3 ([Pei22, Lemma 1.2]). Let H ∈ Zn×n
q be invertible. Then

Λ⊥
q (H ·A) = Λ⊥

q (A)

Proof. (⊆) Let x ∈ Λ⊥
q (H ·A). Then (H ·A)x = 0 (mod q), which gives H(Ax) = 0

(mod q). Since H is invertible over Zq, multiplying both sides by H−1 yields Ax = 0
(mod q), so x ∈ Λ⊥

q (A).

(⊇) Let x ∈ Λ⊥
q (A). ThenAx = 0 (mod q). Therefore, (H·A)x = H(Ax) = H·0 = 0

(mod q), so x ∈ Λ⊥
q (H ·A). ■

Using Lemma 3, we can left-multiply A = [H|A′] by H−1 to obtain:

H−1 ·A = H−1 · [H|A′] = [H−1H|H−1A′] = [In|Ã]

where Ã = H−1A′ ∈ Zn×(m−n)
q .

By Lemma 3, we have:

Λ⊥
q ([In|Ã]) = Λ⊥

q (H
−1 ·A) = Λ⊥

q (A)

Therefore, the lattice remains unchanged when we replace the invertible submatrix H
with the identity matrix In (and update the remaining columns accordingly).
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3. Using the previous parts, describe how to efficiently compute a basis of Λ⊥
q (A).

Hint: if A = [In|Ã], then show that the n columns of

(
qIn
0

)
are vectors in Λ⊥

q (A).

Find m − n more columns and prove that all m columns together form a basis B of
Λ⊥

q (A), i.e. that B · Zm = Λ⊥
q (A).

Solution: Following the canonical basis construction from [Pei22], we construct a

basis for Λ⊥
q (A) when A = [In|Ã] where Ã ∈ Zn×(m−n)

q .

Consider the following matrix:

B =

(
qIn −Ã
0 Im−n

)
∈ Zm×m

where −Ã represents any integer matrix whose entries reduce to −Ã (mod q) (e.g.,
with entries in {0, 1, . . . , q − 1}).
We verify that B is a basis of Λ⊥

q (A):

1. Linear Independence: The matrix B is upper triangular with non-zero diagonal
entries (q in the first n positions and 1 in the remaining m − n positions), hence its
columns are linearly independent.

2. Columns belong to the lattice: For each column bj ofB, we verify thatAbj = 0
(mod q):

• For j ≤ n: The j-th column is (0, . . . , 0, q, 0, . . . , 0)T with q in position j.

[In|Ã] · bj = q · ej = 0 (mod q)

• For j > n: The j-th column has the form (−ãj−n, ej−n)
T where ãj−n is the

(j − n)-th column of Ã.

[In|Ã] · bj = −ãj−n + ãj−n = 0 (mod q)

Complete Algorithm:

(a) Find an invertible n× n submatrix of A using RREF (part 1)

(b) Use column permutation to move it to the first n columns: A′ = AP

(c) Transform to systematic form: [In|Ã] = H−1A′ (part 2)

(d) Output the basis B =

(
qIn −Ã
0 Im−n

)
(e) Transform back: the basis for the original lattice is PB

4. Recall that the SIS problem is to find a short nonzero solution to Az = 0 mod q for
uniformly random A. Using the previous parts, prove that the following problem is

14



at least as hard as SIS: given uniformly random A′, find a short nonzero solution to
A′z = e mod q where e ∈ Zn is any short vector of the attacker’s choice.

Hint: the number of columns needed could not be the same in A and A′.

Solution: We prove that the Inhomogeneous SIS (ISIS) problem is at least as hard as
SIS by giving a reduction from SIS to ISIS.

ISIS Problem: Given uniformly random A′ ∈ Zn×m′
q , find a short nonzero z′ ∈ Zm′

such that A′z′ = e (mod q) where e ∈ Zn is any short vector of the attacker’s choice,
and ∥z′∥ ≤ β′.

Reduction: Given a SIS instance with uniformly random A ∈ Zn×m
q and bound β,

we construct an algorithm that uses an ISIS solver to find a short nonzero z such that
Az = 0 (mod q) and ∥z∥ ≤ β.

(a) Partition the matrix: Choose some m′ < m and partition A = [A1|A2] where

A1 ∈ Zn×m′
q and A2 ∈ Zn×(m−m′)

q . Since A is uniformly random, both A1 and A2

are uniformly random over their respective domains.

(b) Sample a short vector: Sample a random short vector z2 ∈ Zm−m′
with ∥z2∥ ≤

β2 for some parameter β2 > 0.

(c) Compute target vector: Compute e = −A2z2 (mod q).

(d) Call ISIS solver: Use the ISIS solver on instance (A1, e) to find z1 ∈ Zm′
such

that A1z1 = e (mod q) and ∥z1∥ ≤ β1 for some parameter β1 > 0.

(e) Construct SIS solution: Output z =

(
z1
z2

)
∈ Zm.

Correctness: We verify that z is a valid SIS solution:

Az = [A1|A2]

(
z1
z2

)
= A1z1 +A2z2

= e+A2z2

= −A2z2 +A2z2

= 0 (mod q)

For the norm bound, we have:

∥z∥ =
∥∥∥∥(z1z2

)∥∥∥∥ =
√
∥z1∥2 + ∥z2∥2 ≤

√
β2
1 + β2

2

To ensure ∥z∥ ≤ β, we need to choose β1 and β2 such that:

β2
1 + β2

2 ≤ β2

This reduction shows that if we can efficiently solve ISIS with bound β1 (finding short
solutions to inhomogeneous systems), then we can efficiently solve SIS with bound β.
Therefore, ISIS is at least as hard as SIS.
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