Lattice Exercises - Solutions # Mohammad Ferry Husnil Arif September 21, 2025 # Exercise 1 - Easy or difficult? For each problem, determine if it is easy (polynomial complexity) or difficult to solve (exponential complexity) and justify by giving the algorithm if it exists (for $m \ge n$): 1. Given a lattice basis $\mathbf{B} \in \mathbb{Z}^{m \times n}$ and a vector $\mathbf{v} \in \mathbb{Z}^m$, decide if $\mathbf{v} \in \Lambda(\mathbf{B})$. **Solution:** This problem is **easy** (polynomial complexity). To check if $\mathbf{v} \in \Lambda(\mathbf{B})$, we need to determine if there exists an integer vector $\mathbf{x} \in \mathbb{Z}^n$ such that $\mathbf{B}\mathbf{x} = \mathbf{v}$. Since **B** generates a lattice, it has full column rank. We solve the system $\mathbf{B}\mathbf{x} = \mathbf{v}$ over \mathbb{Q} using standard Gaussian elimination. If the system has no solution over \mathbb{Q} , then certainly $\mathbf{v} \notin \Lambda(\mathbf{B})$. If a unique solution $\mathbf{x} \in \mathbb{Q}^n$ exists (which is guaranteed for full column rank), we check whether all components of \mathbf{x} are integers. If $\mathbf{x} \in \mathbb{Z}^n$, then $\mathbf{v} \in \Lambda(\mathbf{B})$; otherwise $\mathbf{v} \notin \Lambda(\mathbf{B})$. The complexity is $O(mn^2)$ for Gaussian elimination over \mathbb{Q} , plus O(n) for checking integrality. 2. Given $\mathbf{B}_1, \mathbf{B}_2 \in \mathbb{Z}^{m \times n}$, decide if $\Lambda(\mathbf{B}_1) = \Lambda(\mathbf{B}_2)$. **Solution:** This problem is **easy** (polynomial complexity). To check if $\Lambda(\mathbf{B}_1) = \Lambda(\mathbf{B}_2)$, we verify that each basis generates the same lattice by checking mutual containment. Two lattices are equal if and only if each is contained in the other. Therefore: - (a) Check if each column of \mathbf{B}_1 belongs to $\Lambda(\mathbf{B}_2)$ using the algorithm from Exercise 1.1 - (b) Check if each column of \mathbf{B}_2 belongs to $\Lambda(\mathbf{B}_1)$ using the same algorithm - (c) If both conditions hold, then $\Lambda(\mathbf{B}_1) = \Lambda(\mathbf{B}_2)$ Since we perform 2n membership tests, each taking $O(mn^2)$ time, the total complexity is $O(mn^3)$. 3. Given an integer matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$, compute a basis for the lattice $\{\mathbf{x} \in \mathbb{Z}_q^m : \mathbf{x}^T \mathbf{A} = \mathbf{0}\}$. **Solution:** This problem is **easy** (polynomial complexity). Note that the lattice $\{\mathbf{x} \in \mathbb{Z}_q^m : \mathbf{x}^T \mathbf{A} = \mathbf{0}\}$ is equivalent to the orthogonal lattice $\Lambda_q^{\perp}(\mathbf{A}^T)$ where $\mathbf{A}^T \in \mathbb{Z}_q^{n \times m}$. A detailed algorithm for computing a basis of such orthogonal lattices is provided in Exercise 5.3, which shows how to efficiently construct a basis with the algorithm runs in polynomial time. 4. Given an integer matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$, compute a basis for the lattice $\{\mathbf{x} \in \mathbb{Z}_q^m : \mathbf{x}^T \mathbf{A} = \mathbf{0}\}$ such that each vector of this basis has an euclidean norm bounded by $q/2\sqrt{n}$. **Solution:** This problem is **difficult** (exponential complexity). While finding *some* basis for the lattice $\Lambda_q^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}_q^m : \mathbf{x}^T \mathbf{A} = \mathbf{0} \bmod q\}$ is easy (as shown in Exercise 1.3), finding a basis with all vectors having Euclidean norm bounded by $\beta = q/(2\sqrt{n})$ is computationally hard. This is precisely the Short Integer Solution (SIS) problem. By Proposition 5.7 from [GPV08], solving $SIS_{q,m,\beta}$ with $\beta = q/(2\sqrt{n})$ is as hard as approximating SIVP (Shortest Independent Vectors Problem) in the worst case to within $\gamma = \beta \cdot \tilde{O}(\sqrt{n})$ factors. Specifically, with $\beta = q/(2\sqrt{n})$, we get: $$\gamma = \frac{q}{2\sqrt{n}} \cdot \tilde{O}(\sqrt{n}) = \frac{q}{2} \cdot \tilde{O}(1)$$ Since q is typically polynomial in n (i.e., q = poly(n)), we have $\gamma = \text{poly}(n)$. According to the complexity of lattice problems, solving SIVP_{γ} with $\gamma = \text{poly}(n)$ requires time $2^{\Omega(n)}$, which is exponential. 5. Given a basis \mathbf{C} , check if $\Lambda(\mathbf{C})$ is cyclic (i.e., for every lattice vector $\mathbf{x} \in \Lambda(\mathbf{C})$, all the vectors obtained by cyclically rotating the coordinates of \mathbf{x} also belong to the lattice). **Solution:** This problem is **easy** (polynomial complexity). To check if $\Lambda(\mathbf{C})$ is cyclic, we need to verify that for every lattice vector $\mathbf{v} \in \Lambda(\mathbf{C})$, its cyclic rotation $\mathbf{T}(\mathbf{v})$ also belongs to the lattice, where \mathbf{T} is the cyclic permutation matrix that shifts coordinates: $(v_1, v_2, \ldots, v_n) \mapsto (v_n, v_1, \ldots, v_{n-1})$. The key observation is that we only need to check this property for the basis vectors of \mathbf{C} . This is because if $\mathbf{T}(\mathbf{c}_i) \in \Lambda(\mathbf{C})$ for all basis vectors \mathbf{c}_i (columns of \mathbf{C}), then by linearity of \mathbf{T} : - For any $\mathbf{v} = \sum_{i=1}^n a_i \mathbf{c}_i \in \Lambda(\mathbf{C})$ where $a_i \in \mathbb{Z}$ - We have $\mathbf{T}(\mathbf{v}) = \mathbf{T} \left(\sum_{i=1}^{n} a_i \mathbf{c}_i \right) = \sum_{i=1}^{n} a_i \mathbf{T}(\mathbf{c}_i)$ - Since each $\mathbf{T}(\mathbf{c}_i) \in \Lambda(\mathbf{C})$ and lattices are closed under integer linear combinations, we get $\mathbf{T}(\mathbf{v}) \in \Lambda(\mathbf{C})$ Therefore, our algorithm is: (a) For each column \mathbf{c}_i of the basis matrix \mathbf{C} : - (b) Compute $\mathbf{T}(\mathbf{c}_i)$ (the cyclic rotation of \mathbf{c}_i) - (c) Check if $\mathbf{T}(\mathbf{c}_i) \in \Lambda(\mathbf{C})$ by solving the system $\mathbf{C}\mathbf{x} = \mathbf{T}(\mathbf{c}_i)$ for integer $\mathbf{x} \in \mathbb{Z}^n$ - (d) If no integer solution exists for any \mathbf{c}_i , then the lattice is not cyclic Step 3 uses the same algorithm as Exercise 1.1 (checking membership in a lattice). The total complexity is O(n) times the complexity of Exercise 1.1, which gives us $O(mn^3)$. 6. Let $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ be a uniformly sampled matrix with $m \geq 4n \log q$, and \mathbf{r} be uniformly sampled in $\{0,1\}^m$. Given $(\mathbf{A}, \mathbf{r}^T \mathbf{A})$, find \mathbf{r} . **Solution:** This problem is **difficult** (exponential complexity). By Lemma 5.1 from [GPV08], when $m \geq 2n \log q$, for all but a q^{-n} fraction of matrices $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, the subset-sums of columns of \mathbf{A} generate \mathbb{Z}_q^n and stronger result in footnote 7 of [GPV08] state that a random subset-sum of \mathbf{A} 's columns is statistically close to uniform over \mathbb{Z}_q^n for almost all \mathbf{A} . In our case, with $m \geq 4n \log q$ (which exceeds the requirement), the syndrome $\mathbf{r}^T \mathbf{A}$ mod q is statistically close to uniform over \mathbb{Z}_q^n . This means it reveals essentially no information about \mathbf{r} that could help narrow down the search space. The only known algorithm is brute force: - (a) For each possible $\mathbf{r}' \in \{0,1\}^m$: - (b) Compute $\mathbf{s}' = \mathbf{r}'^T \mathbf{A} \mod q$ - (c) If $\mathbf{s}' = \mathbf{r}^T \mathbf{A}$, output \mathbf{r}' and halt This algorithm has complexity $O(mn \cdot 2^m)$, which is exponential in m. The statistical closeness to uniform distribution ensures that no better algorithm exists, as the syndrome provides no useful structure to exploit. 7. Let $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ be a uniformly sampled matrix with $m \geq 4n \log q$, and \mathbf{r} be uniformly sampled in $\{0,1\}^n$. Given $(\mathbf{A}, \mathbf{Ar})$, find \mathbf{r} . Solution: This problem is easy (polynomial complexity). This is simply solving a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \mathbf{A}\mathbf{r}$ is given. Since $m \ge 4n \log q \gg n$, the system is overdetermined (more equations than unknowns). With high probability over the choice of random \mathbf{A} , the matrix has full column rank, ensuring at most one solution exists. The algorithm is: - (a) Solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ over \mathbb{Z}_q to find $\mathbf{x} \in \mathbb{Z}_q^n$ - (b) Check if $\mathbf{x} \in \{0, 1\}^n$ - (c) If yes, output $\mathbf{x} = \mathbf{r}$; otherwise, no valid solution exists Step 1 can be done using Gaussian elimination, taking polynomial time $O(mn^2)$. Since **A** is random with $m \gg n$, the solution (if it exists) is unique with overwhelming probability, and it must be the original **r** since $\mathbf{Ar} = \mathbf{b}$. # Exercise 2 - Solving LWE in dimension 2 and 3 Solve (in \mathbb{Z}) the following linear systems of equations with noise, knowing that in each equation, the noise is in $\{0,1\}$: 1. $$x_1 + x_2 \simeq 3$$ $$2x_1 + x_2 \simeq 4$$ $$x_1 + 3x_2 \simeq 4$$ $$-x_1 + x_2 \simeq 1$$ $$3x_1 + 2x_2 \simeq 5$$ 2. $$2x_1 + x_2 + x_3 \simeq 10$$ $$x_1 + 4x_2 + 3x_3 \simeq 26$$ $$3x_1 + x_2 + 2x_3 \simeq 13$$ $$x_1 + 2x_2 + 2x_3 \simeq 15$$ $$2x_1 + 2x_2 + x_3 \simeq 15$$ **Solution:** We solve these noisy linear systems by reformulating them as Closest Vector Problem (CVP) instances and applying Kannan's embedding technique [Kan83]. For a system of noisy equations where each equation has the form $\mathbf{a}_i^T \mathbf{x} \simeq b_i$ with noise in $\{0, 1\}$, we can write: $$Ax = b - e$$ where **A** is the coefficient matrix, **b** is the vector of right-hand sides, and $\mathbf{e} \in \{0, 1\}^m$ is the unknown noise vector. This is equivalent to finding the closest point in the lattice $\Lambda = \{\mathbf{A}\mathbf{y} : \mathbf{y} \in \mathbb{Z}^n\}$ to the target vector \mathbf{b} . The closest lattice point $\mathbf{A}\mathbf{x}^*$ will satisfy $\|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|_{\infty} \leq 1$, ensuring all noise components are in $\{0,1\}$. Following Kannan's embedding method, we construct an extended lattice with basis: $$\mathbf{B}' = egin{pmatrix} \mathbf{I}_n & \mathbf{A}^T \ \mathbf{0} & -\mathbf{b}^T \end{pmatrix}$$ and append an additional column $(\mathbf{0}, \dots, 0, M)^T$ where M is a large embedding parameter. The short vector in this extended lattice has the form $(\mathbf{x}^*, 1)$ which, when multiplied by \mathbf{B}' , gives us $(\mathbf{x}^*, \mathbf{A}\mathbf{x}^* - \mathbf{b}, M)$. Since $\mathbf{A}\mathbf{x}^* - \mathbf{b} = -\mathbf{e}$ where $\mathbf{e} \in \{0, 1\}^m$, we can directly verify that each component of $\mathbf{A}\mathbf{x}^* - \mathbf{b}$ is in $\{-1, 0\}$. ### Implementation in SageMath: For system 2.1: ``` = matrix(ZZ, [[1, 1], 2 [2, 1], 3 [1, 3], [-1, 1], [3, 2] 6]) v = vector(ZZ, [3, 4, 4, 1, 5]) # Build the block matrix 10 M = block_matrix([11 [identity_matrix(2), A.T], 12 [zero_matrix(1, 2), -matrix(ZZ, v)] 13]) 14 M = M.augment(vector(ZZ, [0, 0, 2**64])) M[:, 2:7] *= 2**32 M = M.LLL() 17 M[:, 2:7] /= 2**32 19 for row in M: 20 if abs(row[-1]) == 2**64: 21 x = row[0:2] 22 assert all(num in [0, 1] for num in (v - A*x)) 23 print(f"{x=}") 24 ``` This gives us $\mathbf{x} = (1, 1)$ with noise vector $\mathbf{e} = (1, 1, 0, 1, 0)$. For system 2.2: ``` A = matrix(ZZ, [[2, 1, 1], 2 [1, 4, 3], [3, 1, 2], [1, 2, 2], 5 [2, 2, 1] 6]) v = vector(ZZ, [10, 26, 13, 15, 15]) # Build the block matrix 10 M = block_matrix([11 [identity_matrix(3), A.T], 12 [zero_matrix(1, 3), -matrix(ZZ, v)] 14 M = M.augment(vector(ZZ, [0, 0, 0, 2**64])) M[:, 3:8] *= 2**32 M = M.LLL() M[:, 3:8] /= 2**32 19 ``` ``` for row in M: if abs(row[-1]) == 2**64: x = row[0:3] assert all(num in [0, 1] for num in (v - A*x)) print(f"{x=}") ``` This gives us $\mathbf{x} = (2, 5, 1)$ with noise vector $\mathbf{e} = (0, 1, 0, 1, 0)$. The scaling factors 2^{32} and 2^{64} are used to ensure numerical stability during LLL reduction while preserving the integer structure of the problem. **Verification:** For both solutions, we verify that $\mathbf{A}\mathbf{x} + \mathbf{e} = \mathbf{b}$ where each component of \mathbf{e} is indeed in $\{0,1\}$. ## Exercise 3 - Reduction 1. Let $n \geq 1$ be an integer, show that there is a reduction from $LWE_{n,q,\alpha}$ for m samples to $SIS_{q,m,\beta}$. On which condition on α and β does it work? **Solution:** We show a reduction from LWE_{n,q,α} (decision version) to SIS_{q,m,β}. First, let us define the two problems precisely: - LWE_{n,q,\alpha} (Decision): Given $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{v} \in \mathbb{Z}_q^m$, distinguish between: - Case 1: $\mathbf{v} = \mathbf{A}\mathbf{s} + \mathbf{e} \pmod{q}$ where $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$ and $\mathbf{e} \leftarrow D_{\mathbb{Z}^m,\alpha q}$ - Case 2: $\mathbf{v} \leftarrow U(\mathbb{Z}_q^m)$ (uniformly random) - $\mathbf{SIS}_{q,m,\beta}$: Given $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$, find a nonzero vector $\mathbf{w} \in \mathbb{Z}^m$ such that $\mathbf{A}^T \mathbf{w} = \mathbf{0} \pmod{q}$ and $\|\mathbf{w}\| \leq \beta$. The Reduction: Given an LWE instance (\mathbf{A}, \mathbf{v}) , we use the SIS solver to distinguish whether \mathbf{v} is an LWE sample or uniformly random: - (a) Use the $SIS_{q,m,\beta}$ solver on **A** to obtain a short vector $\mathbf{w} \in \mathbb{Z}^m$ such that $\mathbf{A}^T\mathbf{w} = \mathbf{0} \pmod{q}$ and $\|\mathbf{w}\| \leq \beta$. - (b) Compute the inner product $\langle \mathbf{v}, \mathbf{w} \rangle \pmod{q}$. - (c) If $|\langle \mathbf{v}, \mathbf{w} \rangle| < q/10$, output "LWE sample"; otherwise output "uniform". **Analysis:** The key observation is that: • If $\mathbf{v} = \mathbf{A}\mathbf{s} + \mathbf{e}$, then $$\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{A}\mathbf{s} + \mathbf{e}, \mathbf{w} \rangle = \langle \mathbf{s}, \mathbf{A}^T \mathbf{w} \rangle + \langle \mathbf{e}, \mathbf{w} \rangle = 0 + \langle \mathbf{e}, \mathbf{w} \rangle \pmod{q}$$ • If **v** is uniform, then $\langle \mathbf{v}, \mathbf{w} \rangle$ is uniformly distributed over \mathbb{Z}_q . To bound $|\langle \mathbf{e}, \mathbf{w} \rangle|$, we need know the bound $||\mathbf{e}||$ where $\mathbf{e} \leftarrow D_{\mathbb{Z}^m, \alpha q}$. For negligible ϵ , by Lemma 3.1 from [GPV08], the smoothing parameter of \mathbb{Z}^m satisfies: $$\eta_{\epsilon}(\mathbb{Z}^m) \leq \operatorname{bl}(\mathbb{Z}^m) \cdot \omega(\sqrt{\log m}) = 1 \cdot \omega(\sqrt{\log m}) = \omega(\sqrt{\log m})$$ If we set $\alpha q \geq \omega(\sqrt{\log m})$, then $\alpha q \geq \eta_{\epsilon}(\mathbb{Z}^m)$. By Lemma 2.9 from [GPV08], when $s = \alpha q \ge \eta_{\epsilon}(\mathbb{Z}^m)$, for $\mathbf{e} \leftarrow D_{\mathbb{Z}^m,\alpha q}$ we have: $$\Pr[\|\mathbf{e}\| > \alpha q \sqrt{m}] \le \frac{1+\epsilon}{1-\epsilon} \cdot 2^{-m}$$ which is negligible. Therefore, with overwhelming probability, $\|\mathbf{e}\| \leq \alpha q \sqrt{m}$. Consequently: $$|\langle \mathbf{e}, \mathbf{w} \rangle| \le ||\mathbf{e}|| \cdot ||\mathbf{w}|| \le \alpha q \sqrt{m} \cdot \beta = \alpha \beta q \sqrt{m}$$ For the reduction to successfully distinguish between the two cases, we need $\alpha\beta q\sqrt{m}$ < q/10, which gives us: Parameter Condition: The reduction works when $$\boxed{\alpha\beta < \frac{1}{10\sqrt{m}}}$$ assuming $\alpha q \ge \omega(\sqrt{\log m})$ hold. Under this condition, LWE samples will have $|\langle \mathbf{v}, \mathbf{w} \rangle| = |\langle \mathbf{e}, \mathbf{w} \rangle| < q/10$, while uniform samples will have $\langle \mathbf{v}, \mathbf{w} \rangle$ distributed uniformly over \mathbb{Z}_q , allowing us to distinguish between the two cases. # Exercise 4 - Dual-Regev Encryption scheme We first define the Dual-Regev encryption scheme. **Definition 1** (Dual-Regev Encryption). Let n, m, and q be integers such that q is prime and $m \ge O(n \log q)$, and let α, γ be real numbers. DualRegev.KeyGen(n, m): Sample **A** uniform in $\mathbb{Z}_q^{m \times n}$, and **x** discrete Gaussian on \mathbb{Z}^m of parameter γq . The secret key is $\mathsf{sk} = \mathbf{x}$ and the public key is $\mathsf{pk} = \mathbf{y}^T = \mathbf{x}^T \mathbf{A} \mod q$ in \mathbb{Z}_q^n . DualRegev.Enc (M, pk) : Given $M \in \{0, 1\}$, sample $\mathbf{s} \leftarrow U(\mathbb{Z}_q^n)$, $\mathbf{e} \leftarrow D_{\mathbb{Z}^m, \alpha q}$ and $e' \leftarrow D_{\mathbb{Z}, \alpha q}$. The ciphertext is $(\mathbf{A}\mathbf{s} + \mathbf{e}, \mathbf{y}^T\mathbf{s} + e' + \lfloor q/2 \rfloor \cdot M) \in \mathbb{Z}_q^m \times \mathbb{Z}_q$. $\mathsf{DualRegev.Dec}((\mathbf{b},c),\mathsf{sk}) \colon \mathit{Given} \ a \ \mathit{ciphertext} \ (\mathbf{b},c), \ \mathit{compute} \ \dots \ ?$ 1. Give the decryption algorithm, what do you compute, and how do you find M? **Solution:** The decryption algorithm works as follows: DualRegev.Dec((\mathbf{b}, c), sk = \mathbf{x}): - (a) Compute $b' = c \mathbf{x}^T \mathbf{b} \pmod{q}$ - (b) Output M = 0 if b' is closer to 0 than to $\lfloor q/2 \rfloor$ (i.e., if |b'| < q/10) - (c) Output M=1 if b' is closer to $\lfloor q/2 \rfloor$ than to 0 (i.e., if $|b'-\lfloor q/2 \rfloor| < q/10$) This works because: $$b' = c - \mathbf{x}^T \mathbf{b} = (\mathbf{y}^T \mathbf{s} + e' + \lfloor q/2 \rfloor \cdot M) - \mathbf{x}^T (\mathbf{A} \mathbf{s} + \mathbf{e})$$ $$= \mathbf{y}^T \mathbf{s} + e' + \lfloor q/2 \rfloor \cdot M - \mathbf{x}^T \mathbf{A} \mathbf{s} - \mathbf{x}^T \mathbf{e}$$ $$= e' - \mathbf{x}^T \mathbf{e} + \lfloor q/2 \rfloor \cdot M$$ where we used the fact that $\mathbf{y}^T = \mathbf{x}^T \mathbf{A} \pmod{q}$. 2. What is the condition between α , γ and q to make sure the scheme is correct? **Solution:** For correct decryption, we need $|e' - \mathbf{x}^T \mathbf{e}| < q/10$ to ensure we can distinguish between the cases M = 0 and M = 1. To analyze this, we define: $$\tilde{\mathbf{e}} = \begin{pmatrix} e' \\ -\mathbf{e} \end{pmatrix} \in \mathbb{Z}^{m+1}, \quad \tilde{\mathbf{x}} = \begin{pmatrix} 1 \\ \mathbf{x} \end{pmatrix} \in \mathbb{Z}^{m+1}$$ Then $e' - \mathbf{x}^T \mathbf{e} = \tilde{\mathbf{x}}^T \tilde{\mathbf{e}}$, and we can bound: $$|e' - \mathbf{x}^T \mathbf{e}| = |\tilde{\mathbf{x}}^T \tilde{\mathbf{e}}| \le ||\tilde{\mathbf{x}}|| \cdot ||\tilde{\mathbf{e}}||$$ Following the same approach as in Exercise 3, we use Lemma 3.1 from [GPV08] to establish that the smoothing parameter $\eta_{\epsilon}(\mathbb{Z}^m) \leq \omega(\sqrt{\log m})$. Then, if we set $\alpha q \geq \omega(\sqrt{\log m})$ and $\gamma q \geq \omega(\sqrt{\log m})$, we can apply Lemma 2.9 from [GPV08] to obtain that with overwhelming probability: - $\|\tilde{\mathbf{e}}\| \leq \alpha q \sqrt{m+1}$ (since $\tilde{\mathbf{e}}$ has distribution $D_{\mathbb{Z}^{m+1},\alpha q}$) - $\|\mathbf{x}\| \le \gamma q \sqrt{m}$ (since $\mathbf{x} \leftarrow D_{\mathbb{Z}^m, \gamma q}$) Since $\|\tilde{\mathbf{x}}\|^2 = 1 + \|\mathbf{x}\|^2$, we have: $$\|\tilde{\mathbf{x}}\| = \sqrt{1 + \|\mathbf{x}\|^2} \le \sqrt{1 + \gamma^2 q^2 m}$$ Therefore: $$|e' - \mathbf{x}^T \mathbf{e}| \le \sqrt{1 + \gamma^2 q^2 m} \cdot \alpha q \sqrt{m + 1}$$ For large $\gamma q \sqrt{m}$, we can approximate $\sqrt{1 + \gamma^2 q^2 m} \approx \gamma q \sqrt{m}$, giving: $$|e' - \mathbf{x}^T \mathbf{e}| \lesssim \gamma q \sqrt{m} \cdot \alpha q \sqrt{m+1} \approx \alpha \gamma q^2 m$$ For correctness, we require: $$\alpha \gamma q^2 m < \frac{q}{10}$$ **Correctness Condition:** $$\alpha \gamma q < \frac{1}{10m}$$ This condition ensures correct decryption with overwhelming probability, assuming $\alpha q \ge \omega(\sqrt{\log m})$ and $\gamma q \ge \omega(\sqrt{\log m})$. 3. Show that the distribution of the public key is statistically close to the uniform distribution in \mathbb{Z}_q^n . **Solution:** The public key in the Dual-Regev encryption scheme is $\mathbf{y}^T = \mathbf{x}^T \mathbf{A} \mod q$ where $\mathbf{x} \leftarrow D_{\mathbb{Z}^m, \gamma q}$. By Corollary 5.4 from [GPV08], for all but a $2q^{-n}$ fraction of $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ and for parameter $\gamma q \geq \omega(\sqrt{\log m})$ (as required in part 4.2 for correctness), the distribution of $\mathbf{x}^T \mathbf{A} \mod q$ for $\mathbf{x} \leftarrow D_{\mathbb{Z}^m, \gamma q}$ is statistically close to uniform over \mathbb{Z}_q^n . 4. Prove that the Dual-Regev encryption scheme is IND-CPA secure under the hardness of the LWE problem. **Solution:** We prove that the Dual-Regev encryption scheme is IND-CPA secure by reduction from the decisional LWE problem. We show that if there exists an adversary \mathcal{A} that breaks the IND-CPA security of Dual-Regev with non-negligible advantage ε , then we can construct an algorithm \mathcal{B} that solves the decisional LWE problem with the same advantage ε . The precise definition of IND-CPA and LWE protocol we give below. $$\begin{array}{c|c} \hline{ \text{IND-CPA}} \\ \hline \mathcal{C} & \mathcal{A} \\ b \leftarrow U(\{0,1\}) \\ \hline \text{Generate (pk, sk)} \\ \hline & & &$$ $$\mathsf{Adv}^{lwe}_{\mathcal{A}} = \left| \Pr[\mathcal{A} \xrightarrow{RAND} 1] - \Pr[\mathcal{A} \xrightarrow{LWE} 1] \right|$$ Suppose there exists a PPT adversary \mathcal{A} that breaks the IND-CPA security of Dual-Regev with non-negligible advantage ε . We construct a PPT algorithm \mathcal{B} that solves the decisional LWE problem with advantage ε . The exact algorithm can be seen below The reduction \mathcal{B} receives a decisional LWE challenge $(\tilde{\mathbf{A}}, \tilde{\mathbf{b}})$ where $\tilde{\mathbf{A}} \in \mathbb{Z}_q^{(m+1)\times n}$ is uniformly random, and $\tilde{\mathbf{b}} \in \mathbb{Z}_q^{m+1}$ is either: - RAND case: $\tilde{\mathbf{b}} \leftarrow U(\mathbb{Z}_q^{m+1})$ (uniformly random) - LWE case: $\tilde{\mathbf{b}} = \tilde{\mathbf{A}}\mathbf{s} + \tilde{\mathbf{e}}$ for some secret $\mathbf{s} \in \mathbb{Z}_q^n$ and error $\tilde{\mathbf{e}} \leftarrow D_{\mathbb{Z}^{m+1},\alpha q}$ \mathcal{B} simulates the IND-CPA game for \mathcal{A} as follows: - (a) **Key Generation:** \mathcal{B} parses $\tilde{\mathbf{A}} = \begin{pmatrix} \mathbf{A} \\ \mathbf{u}^T \end{pmatrix}$ where $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_q^n$. It sends the public key $\mathsf{pk} = (\mathbf{A}, \mathbf{u})$ to \mathcal{A} . - (b) Challenge: \mathcal{A} sends two messages $M_0, M_1 \in \{0, 1\}$. \mathcal{B} chooses a random bit $b \leftarrow U(\{0, 1\})$. - (c) Ciphertext Generation: \mathcal{B} parses $\tilde{\mathbf{b}} = \begin{pmatrix} \mathbf{b} \\ v \end{pmatrix}$ where $\mathbf{b} \in \mathbb{Z}_q^m$ and $v \in \mathbb{Z}_q$. It computes: $$c = v + |q/2| \cdot M_b$$ and sends the ciphertext (\mathbf{b}, c) to \mathcal{A} . (d) **Output:** \mathcal{A} outputs a bit b'. If b = b', then \mathcal{B} outputs 1 (guessing LWE); otherwise, it outputs 0 (guessing RAND). #### **Analysis:** Case 1: LWE instance. When $\tilde{\mathbf{b}} = \tilde{\mathbf{A}}\mathbf{s} + \tilde{\mathbf{e}}$, we have: $$ilde{\mathbf{b}} = egin{pmatrix} \mathbf{A} \ \mathbf{u}^T \end{pmatrix} \mathbf{s} + egin{pmatrix} \mathbf{e} \ e' \end{pmatrix} = egin{pmatrix} \mathbf{A}\mathbf{s} + \mathbf{e} \ \mathbf{u}^T\mathbf{s} + e' \end{pmatrix}$$ Therefore, $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$ and $v = \mathbf{u}^T\mathbf{s} + e'$. The ciphertext is: $$(\mathbf{b}, c) = (\mathbf{A}\mathbf{s} + \mathbf{e}, \mathbf{u}^T\mathbf{s} + e' + \lfloor q/2 \rfloor \cdot M_b)$$ This is exactly a valid Dual-Regev encryption of M_b under public key (\mathbf{A}, \mathbf{u}) with randomness \mathbf{s} and error terms \mathbf{e}, e' . Since \mathbf{u} is uniformly random (as part of $\tilde{\mathbf{A}}$), by the result from Exercise 4.3, the public key distribution is statistically close to that of the real Dual-Regev scheme. Therefore, \mathcal{A} receives a perfect simulation of the IND-CPA game and outputs b' = b with probability $\frac{1}{2} + \varepsilon$. <u>Case 2: RAND instance.</u> When $\tilde{\mathbf{b}}$ is uniformly random, both \mathbf{b} and v are uniformly random and independent. In particular, v is uniform over \mathbb{Z}_q , so: $$c = v + \lfloor q/2 \rfloor \cdot M_b$$ is uniformly distributed over \mathbb{Z}_q regardless of the value of M_b . The ciphertext reveals no information about b, so \mathcal{A} can only guess randomly. Thus, $\Pr[b'=b]=\frac{1}{2}$. ### Advantage Calculation: $$\begin{aligned} \mathsf{Adv}^{\mathrm{lwe}}_{\mathcal{B}} &= |\Pr[\mathcal{B} \to 1 \mid \mathrm{LWE}] - \Pr[\mathcal{B} \to 1 \mid \mathrm{RAND}]| \\ &= |\Pr[b' = b \mid \mathrm{LWE}] - \Pr[b' = b \mid \mathrm{RAND}]| \\ &= \left| \left(\frac{1}{2} + \varepsilon \right) - \frac{1}{2} \right| \\ &= \varepsilon \end{aligned}$$ Since ε is non-negligible by assumption, \mathcal{B} solves the decisional LWE problem with non-negligible advantage, contradicting the hardness of LWE. Therefore, no such adversary \mathcal{A} can exist, and the Dual-Regev encryption scheme is IND-CPA secure under the LWE assumption. ### Exercise 5 Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ be a matrix specifying the q-ary lattice $\Lambda_q^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q\}$. You may assume throughout this problem that q is prime (but it is not a necessary hypothesis). Note that **A** is the transpose of the matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ used during the lecture. **Note:** The solutions to parts 1-3 follow closely the development in [Pei22], particularly the results on equivalent lattice representations and canonical basis construction for SIS lattices. 1. Describe an efficient algorithm that finds an n-by-n submatrix of \mathbf{A} which is invertible over \mathbb{Z}_q if one exists. (For uniformly random matrix \mathbf{A} and typically used m, it can be shown that such a submatrix exists with high probability). Also argue that this invertible submatrix can be moved to the first n columns of \mathbf{A} , without essentially changing the lattice. **Solution:** To find an $n \times n$ invertible submatrix of $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$: ### Algorithm: - (a) Compute the reduced row echelon form (RREF) of **A** over \mathbb{Z}_q - (b) Identify the pivot columns (columns with leading non-zero entries) - (c) If there are at least n pivot columns, the first n pivot columns form an invertible $n \times n$ submatrix Since q is prime, \mathbb{Z}_q is a field, so the pivot columns are linearly independent. An $n \times n$ matrix over a field is invertible if and only if its columns are linearly independent. To move this invertible submatrix to the first n columns, let the pivot columns have indices $\{i_1, \ldots, i_n\}$. Construct a permutation matrix \mathbf{P} that moves these columns to positions $1, \ldots, n$. Then $\mathbf{A}' = \mathbf{A}\mathbf{P}$ has the form $[\mathbf{H}|\mathbf{B}]$ where $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ is the invertible submatrix and $\mathbf{B} \in \mathbb{Z}_q^{n \times (m-n)}$ contains the remaining columns. To show this doesn't essentially change the lattice, we state and prove the following lemma: **Lemma 2** ([Pei22, Lemma 1.3]). For any invertible matrix $\mathbf{T} \in \mathbb{Z}_q^{m \times m}$, we have $$\Lambda_a^{\perp}(\mathbf{A} \cdot \mathbf{T}) = \mathbf{T}^{-1} \cdot \Lambda_a^{\perp}(\mathbf{A})$$ *Proof.* We show both set containments. (\subseteq) Let $\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A} \cdot \mathbf{T})$. Then $(\mathbf{A} \cdot \mathbf{T})\mathbf{x} = \mathbf{0} \pmod{q}$. Let $\mathbf{y} = \mathbf{T}\mathbf{x}$. Then $$Ay = A(Tx) = (A \cdot T)x = 0 \pmod{q}$$ so $\mathbf{y} \in \Lambda_q^{\perp}(\mathbf{A})$. Since $\mathbf{x} = \mathbf{T}^{-1}\mathbf{y}$, we have $\mathbf{x} \in \mathbf{T}^{-1} \cdot \Lambda_q^{\perp}(\mathbf{A})$. (\supseteq) Let $\mathbf{x} \in \mathbf{T}^{-1} \cdot \Lambda_q^{\perp}(\mathbf{A})$. Then $\mathbf{x} = \mathbf{T}^{-1}\mathbf{y}$ for some $\mathbf{y} \in \Lambda_q^{\perp}(\mathbf{A})$. We have $$(\mathbf{A} \cdot \mathbf{T})\mathbf{x} = (\mathbf{A} \cdot \mathbf{T})(\mathbf{T}^{-1}\mathbf{y}) = \mathbf{A}\mathbf{y} = \mathbf{0} \pmod{q}$$ so $$\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A} \cdot \mathbf{T})$$. For a permutation matrix **P** is invertible matrix. Therefore, $\Lambda_q^{\perp}(\mathbf{AP}) = \mathbf{P}^{-1} \cdot \Lambda_q^{\perp}(\mathbf{A})$ is simply a coordinate permutation of $\Lambda_q^{\perp}(\mathbf{A})$, preserving all essential geometric properties like determinant and successive minima. 2. Prove that the invertible submatrix can be replaced by the identity matrix \mathbf{I}_n , possibly changing the rest of \mathbf{A} as well, without changing the lattice. **Solution:** Given $\mathbf{A} = [\mathbf{H}|\mathbf{A}']$ where $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ is invertible and $\mathbf{A}' \in \mathbb{Z}_q^{n \times (m-n)}$, we can transform it to $[\mathbf{I}_n|\tilde{\mathbf{A}}]$ without changing the lattice. **Lemma 3** ([Pei22, Lemma 1.2]). Let $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$ be invertible. Then $$\Lambda_a^{\perp}(\mathbf{H} \cdot \mathbf{A}) = \Lambda_a^{\perp}(\mathbf{A})$$ Proof. (\subseteq) Let $\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{H} \cdot \mathbf{A})$. Then $(\mathbf{H} \cdot \mathbf{A})\mathbf{x} = \mathbf{0} \pmod{q}$, which gives $\mathbf{H}(\mathbf{A}\mathbf{x}) = \mathbf{0} \pmod{q}$. Since \mathbf{H} is invertible over \mathbb{Z}_q , multiplying both sides by \mathbf{H}^{-1} yields $\mathbf{A}\mathbf{x} = \mathbf{0} \pmod{q}$, so $\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A})$. ($$\supseteq$$) Let $\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A})$. Then $\mathbf{A}\mathbf{x} = \mathbf{0} \pmod{q}$. Therefore, $(\mathbf{H} \cdot \mathbf{A})\mathbf{x} = \mathbf{H}(\mathbf{A}\mathbf{x}) = \mathbf{H} \cdot \mathbf{0} = \mathbf{0} \pmod{q}$, so $\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{H} \cdot \mathbf{A})$. Using Lemma 3, we can left-multiply $\mathbf{A} = [\mathbf{H}|\mathbf{A}']$ by \mathbf{H}^{-1} to obtain: $$\mathbf{H}^{-1} \cdot \mathbf{A} = \mathbf{H}^{-1} \cdot [\mathbf{H}|\mathbf{A}'] = [\mathbf{H}^{-1}\mathbf{H}|\mathbf{H}^{-1}\mathbf{A}'] = [\mathbf{I}_n|\tilde{\mathbf{A}}]$$ where $\tilde{\mathbf{A}} = \mathbf{H}^{-1} \mathbf{A}' \in \mathbb{Z}_q^{n \times (m-n)}$. By Lemma 3, we have: $$\Lambda_q^{\perp}([\mathbf{I}_n|\tilde{\mathbf{A}}]) = \Lambda_q^{\perp}(\mathbf{H}^{-1}\cdot\mathbf{A}) = \Lambda_q^{\perp}(\mathbf{A})$$ Therefore, the lattice remains unchanged when we replace the invertible submatrix \mathbf{H} with the identity matrix \mathbf{I}_n (and update the remaining columns accordingly). 3. Using the previous parts, describe how to efficiently compute a basis of $\Lambda_q^{\perp}(\mathbf{A})$. Hint: if $\mathbf{A} = [\mathbf{I}_n | \tilde{\mathbf{A}}]$, then show that the *n* columns of $\begin{pmatrix} q \mathbf{I}_n \\ \mathbf{0} \end{pmatrix}$ are vectors in $\Lambda_q^{\perp}(\mathbf{A})$. Find m-n more columns and prove that all *m* columns together form a basis \mathbf{B} of $\Lambda_q^{\perp}(\mathbf{A})$, i.e. that $\mathbf{B} \cdot \mathbb{Z}^m = \Lambda_q^{\perp}(\mathbf{A})$. **Solution:** Following the canonical basis construction from [Pei22], we construct a basis for $\Lambda_q^{\perp}(\mathbf{A})$ when $\mathbf{A} = [\mathbf{I}_n | \tilde{\mathbf{A}}]$ where $\tilde{\mathbf{A}} \in \mathbb{Z}_q^{n \times (m-n)}$. Consider the following matrix: $$\mathbf{B} = egin{pmatrix} q\mathbf{I}_n & - ilde{\mathbf{A}} \ \mathbf{0} & \mathbf{I}_{m-n} \end{pmatrix} \in \mathbb{Z}^{m imes m}$$ where $-\tilde{\mathbf{A}}$ represents any integer matrix whose entries reduce to $-\tilde{\mathbf{A}} \pmod{q}$ (e.g., with entries in $\{0, 1, \dots, q-1\}$). We verify that **B** is a basis of $\Lambda_q^{\perp}(\mathbf{A})$: - 1. Linear Independence: The matrix **B** is upper triangular with non-zero diagonal entries (q in the first n positions and 1 in the remaining m-n positions), hence its columns are linearly independent. - **2. Columns belong to the lattice:** For each column \mathbf{b}_j of \mathbf{B} , we verify that $\mathbf{A}\mathbf{b}_j = \mathbf{0} \pmod{q}$: - For $j \leq n$: The j-th column is $(0, \dots, 0, q, 0, \dots, 0)^T$ with q in position j. $$[\mathbf{I}_n|\tilde{\mathbf{A}}] \cdot \mathbf{b}_i = q \cdot \mathbf{e}_i = \mathbf{0} \pmod{q}$$ • For j > n: The j-th column has the form $(-\tilde{\mathbf{a}}_{j-n}, \mathbf{e}_{j-n})^T$ where $\tilde{\mathbf{a}}_{j-n}$ is the (j-n)-th column of $\tilde{\mathbf{A}}$. $$[\mathbf{I}_n|\tilde{\mathbf{A}}] \cdot \mathbf{b}_j = -\tilde{\mathbf{a}}_{j-n} + \tilde{\mathbf{a}}_{j-n} = \mathbf{0} \pmod{q}$$ #### Complete Algorithm: - (a) Find an invertible $n \times n$ submatrix of **A** using RREF (part 1) - (b) Use column permutation to move it to the first n columns: $\mathbf{A}' = \mathbf{AP}$ - (c) Transform to systematic form: $[\mathbf{I}_n|\tilde{\mathbf{A}}] = \mathbf{H}^{-1}\mathbf{A}'$ (part 2) - (d) Output the basis $\mathbf{B} = \begin{pmatrix} q\mathbf{I}_n & -\tilde{\mathbf{A}} \\ \mathbf{0} & \mathbf{I}_{m-n} \end{pmatrix}$ - (e) Transform back: the basis for the original lattice is PB - 4. Recall that the SIS problem is to find a short nonzero solution to $\mathbf{Az} = \mathbf{0} \mod q$ for uniformly random \mathbf{A} . Using the previous parts, prove that the following problem is at least as hard as SIS: given uniformly random \mathbf{A}' , find a short nonzero solution to $\mathbf{A}'\mathbf{z} = \mathbf{e} \mod q$ where $\mathbf{e} \in \mathbb{Z}^n$ is any short vector of the attacker's choice. Hint: the number of columns needed could not be the same in A and A'. **Solution:** We prove that the Inhomogeneous SIS (ISIS) problem is at least as hard as SIS by giving a reduction from SIS to ISIS. **ISIS Problem:** Given uniformly random $\mathbf{A}' \in \mathbb{Z}_q^{n \times m'}$, find a short nonzero $\mathbf{z}' \in \mathbb{Z}^{m'}$ such that $\mathbf{A}'\mathbf{z}' = \mathbf{e} \pmod{q}$ where $\mathbf{e} \in \mathbb{Z}^n$ is any short vector of the attacker's choice, and $\|\mathbf{z}'\| \leq \beta'$. **Reduction:** Given a SIS instance with uniformly random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and bound β , we construct an algorithm that uses an ISIS solver to find a short nonzero \mathbf{z} such that $\mathbf{A}\mathbf{z} = \mathbf{0} \pmod{q}$ and $\|\mathbf{z}\| \leq \beta$. - (a) Partition the matrix: Choose some m' < m and partition $\mathbf{A} = [\mathbf{A}_1 | \mathbf{A}_2]$ where $\mathbf{A}_1 \in \mathbb{Z}_q^{n \times m'}$ and $\mathbf{A}_2 \in \mathbb{Z}_q^{n \times (m-m')}$. Since \mathbf{A} is uniformly random, both \mathbf{A}_1 and \mathbf{A}_2 are uniformly random over their respective domains. - (b) Sample a short vector: Sample a random short vector $\mathbf{z}_2 \in \mathbb{Z}^{m-m'}$ with $\|\mathbf{z}_2\| \le \beta_2$ for some parameter $\beta_2 > 0$. - (c) Compute target vector: Compute $\mathbf{e} = -\mathbf{A}_2\mathbf{z}_2 \pmod{q}$. - (d) Call ISIS solver: Use the ISIS solver on instance $(\mathbf{A}_1, \mathbf{e})$ to find $\mathbf{z}_1 \in \mathbb{Z}^{m'}$ such that $\mathbf{A}_1\mathbf{z}_1 = \mathbf{e} \pmod{q}$ and $\|\mathbf{z}_1\| \leq \beta_1$ for some parameter $\beta_1 > 0$. - (e) Construct SIS solution: Output $\mathbf{z} = \begin{pmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{pmatrix} \in \mathbb{Z}^m$. Correctness: We verify that z is a valid SIS solution: $$\mathbf{Az} = [\mathbf{A}_1 | \mathbf{A}_2] \begin{pmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{pmatrix}$$ $$= \mathbf{A}_1 \mathbf{z}_1 + \mathbf{A}_2 \mathbf{z}_2$$ $$= \mathbf{e} + \mathbf{A}_2 \mathbf{z}_2$$ $$= -\mathbf{A}_2 \mathbf{z}_2 + \mathbf{A}_2 \mathbf{z}_2$$ $$= \mathbf{0} \pmod{q}$$ For the norm bound, we have: $$\|\mathbf{z}\| = \left\| \begin{pmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{pmatrix} \right\| = \sqrt{\|\mathbf{z}_1\|^2 + \|\mathbf{z}_2\|^2} \le \sqrt{\beta_1^2 + \beta_2^2}$$ To ensure $\|\mathbf{z}\| \leq \beta$, we need to choose β_1 and β_2 such that: $$\beta_1^2 + \beta_2^2 \le \beta^2$$ This reduction shows that if we can efficiently solve ISIS with bound β_1 (finding short solutions to inhomogeneous systems), then we can efficiently solve SIS with bound β . Therefore, ISIS is at least as hard as SIS. # References - [GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In *Proceedings of the 40th Annual ACM Symposium on Theory of Computing*, STOC '08, pages 197–206, New York, NY, USA, 2008. ACM. - [Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice problems. In *Proceedings of the 15th Annual ACM Symposium on Theory of Computing*, STOC '83, pages 99–108, New York, NY, USA, 1983. ACM. - [Pei22] Chris Peikert. Lattices in cryptography: Lecture 12 sis lattices & applications. University of Michigan, Fall 2022, 2022. Course lecture notes. Scribe: Jacob Alperin-Sheriff.